HOT TOPICS IN CARDIOLOGIA 2023

13 e 14 Novembre 2023

Villa Doria D'Angri Via F. Petrarca 80, Napoli

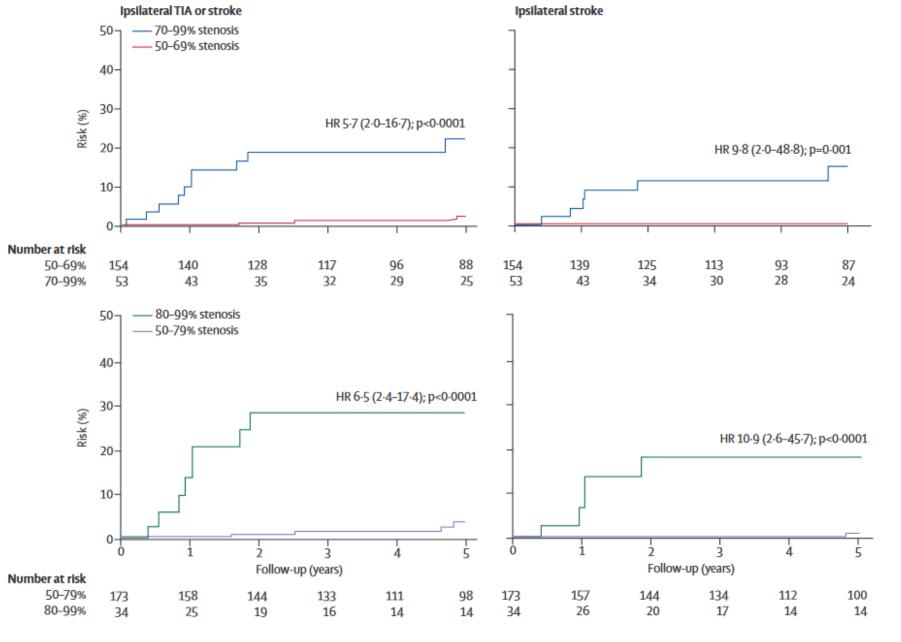
Presidente del congresso: Dr. Ciro Mauro

Direttore UOC di Cardiologia UTIC con emodinamica AORN Cardarelli, Napoli

Stenosi Carotidea Asintomatica

Eugenio Stabile, MD, PhD

Direttore U.OC. Cardiologia, AOR San Carlo -Potenza Professore Associato di Malattie dell'Apparato Cardiovascolare, Università degli studi Federico II, Napoli


Basic principles of screening

The condition should be an important health problem.

- There should be a treatment for the condition.
- Facilities for diagnosis and treatment should be available.
- There should be a latent stage of the disease.
- There should be a test or examination for the condition.
- The test should be acceptable to the population.
- The natural history of the disease should be adequately understood.
- There should be an agreed policy on whom to treat.
- The cost of finding a case should be balanced in relation to overall medical expenditure.

Risk of stroke in relation to degree of asymptomatic carotid stenosis

Eugenio Stabile, MD, PhD, FESC

Howard DPJ et al. Lancet Neurol. 2021

Basic principles of screening

The condition should be an important health problem.

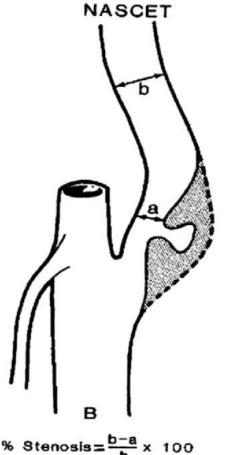
There should be a treatment for the condition.

Facilities for diagnosis and treatment should be available.

There should be a latent stage of the disease.

There should be a test or examination for the condition.

The test should be acceptable to the population.


The natural history of the disease should be adequately understood.

There should be an agreed policy on whom to treat.

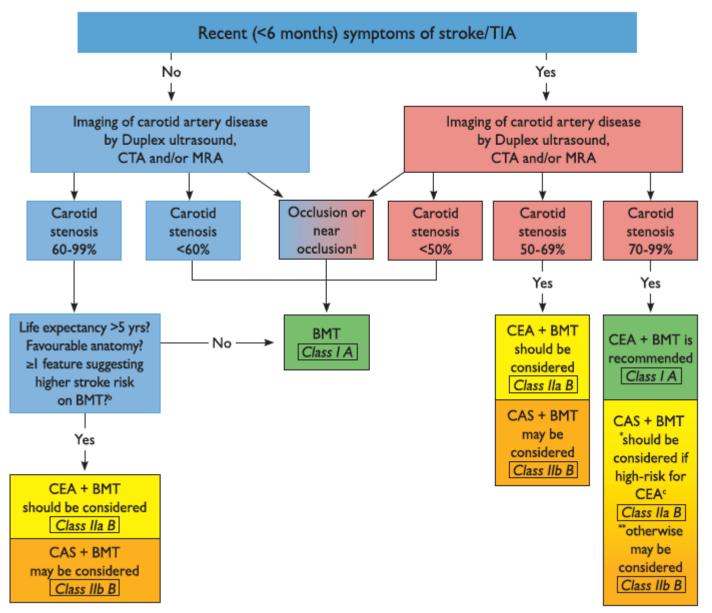
The cost of finding a case should be balanced in relation to overall medical expenditure.

Risk Reduction of Any Stroke or Operative Death at 5 Years After CEA in Symptomatic Patients From 3 Randomized Clinical Trials

ARR (%, 95% CI)	р	RRR (95% CI)
-0.1 (-10.3 to 10.2)	0.6	0.98 (0.61 to 1.59)
15.6 (9.8 to 20.7)	0.00001	0.52 (0.40 to 0.64)
7.8 (3.1 to 12.5)	0.002	0.72 (0.58 to 0.86)
2.6 (-1.7 to 6.9)	0.7	0.90 (0.75 to 1.04)
-2.6 (-6.2 to 0.9)	0.03	1.17 (0.90 to 1.43)
	15.6 (9.8 to 20.7) 7.8 (3.1 to 12.5) 2.6 (-1.7 to 6.9)	$\begin{array}{c} -0.1 (-10.3 \ {\rm to} \ 10.2) & 0.6 \\ 15.6 (9.8 \ {\rm to} \ 20.7) & 0.00001 \\ 7.8 (3.1 \ {\rm to} \ 12.5) & 0.002 \\ 2.6 (-1.7 \ {\rm to} \ 6.9) & 0.7 \end{array}$

% Stenosis= $\frac{b-a}{b} \times 100$

Rothwell PM et al. Lancet 2003;361:107–16 (87)


ESC GUIDELINES

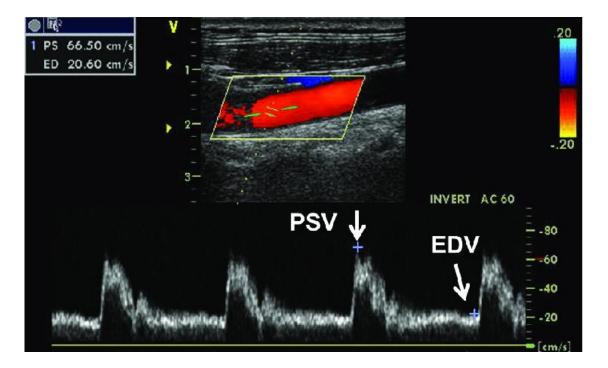
European Heart Journal (2017) **00**, 1–60 European Society of Cardiology

2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)

CAS offers advantages over CEA in the presence of

- a 'hostile neck' (previous radiation, recurrent stenosis),
- contralateral recurrent laryngeal nerve palsy
- challenging surgical access [very high ICA lesions, proximal common carotid artery (CCA) lesions]
- patients at higher risk for suffering perioperative cardiac complications

Basic principles of screening


The condition should be an important health problem.

- There should be a treatment for the condition.
- Facilities for diagnosis and treatment should be available.
- There should be a latent stage of the disease.
- There should be a test or examination for the condition.
- The test should be acceptable to the population.
- The natural history of the disease should be adequately understood.

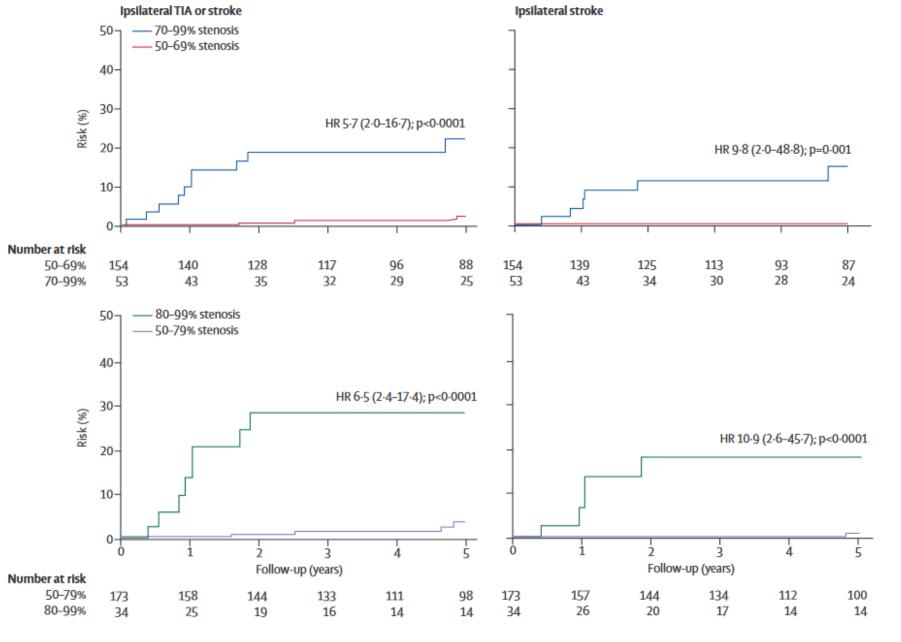
There should be an agreed policy on whom to treat.

The cost of finding a case should be balanced in relation to overall medical expenditure.

	Primary	Parameters	Additional	Parameters
Degree of Stenosis (%)	ICA PSV (cm/sec)	Plaque Estimate (%)*	ICA/CCA PSV Ratio	ICA EDV (cm/sec)
Normal <50 50–69 ≥70 but less than	<125 <125 125–230 >230	None <50 ≥50 ≥50	<2.0 <2.0 2.0–4.0 >4.0	<40 <40 40–100 >100
near occlusion Near occlusion	High, low, or undetectable	Visible	Variable	Variable
Total occlusion	Undetectable	Visible, no detectable lumen	Not applicable	Not applicable

2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)

Recommendations	Class ^a	Level ^b
DUS (as first-line imaging), CTA and/or MRA are recommended for evaluating the extent and severity of extracranial carotid stenoses. ⁹⁹	I	В
When CAS is being considered, it is recommended that any DUS study be fol- lowed by either MRA or CTA to evaluate the aortic arch as well as the extra- and intracranial circulation. ⁹⁹	I	В
When CEA is considered, it is recom- mended that the DUS stenosis estimation be corroborated by either MRA or CTA (or by a repeat DUS study performed in an expert vascular laboratory). ⁹⁹	I	В



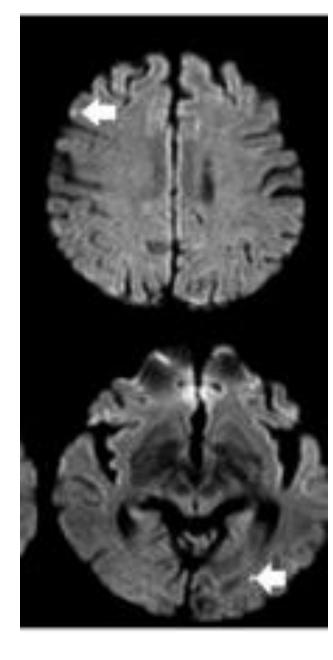
Second Manifestations of ARTerial disease

Asymptomatic Carotid Artery	TABLE 3. Number of Events in Patients W During Follow Up	ith and Without CAS
, Stenosis and the Risk of New	after 5 years	No Asymptomatic CAS (n=2463)
Vascular Events in	Nonvascular death	74 (3)
Patients With	Vascular death	114 (5)
Manifest Arterial	MI	137 (6)
Disease	Ischemic stroke	43 (2)
DISCUSC	All first vascular events	209 (9)
	CEA	4 (0)
The SMART Study	Endovascular intervention	•••
	Data represent number of patients with percentage	ges in parentheses.

Eugenio Stabile, MD, PhD, FESC

Goessens B et al. Stroke 2007

Risk of stroke in relation to degree of asymptomatic carotid stenosis


Eugenio Stabile, MD, PhD, FESC

Howard DPJ et al. Lancet Neurol. 2021

ESC GUIDELINES

2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)

Clinical [®]	• Contralateral TIA/stroke ¹²¹
Cerebral imaging	 Ipsilateral silent infarction¹²²
Ultrasound imaging	 Stenosis progression (> 20%)¹²³ Spontaneous embolization on transcranial Doppler (HITS)¹²⁴ Impaired cerebral vascular reserve¹²⁵ Large plaques^{b126} Echolucent plaques⁹⁶ Increased juxta-luminal black (hypoechogenic) area¹²⁷
MRA	 Intraplaque haemorrhage¹²⁸ Lipid-rich necrotic core

Basic principles of screening

The condition should be an important health problem.

There should be a treatment for the condition.

Facilities for diagnosis and treatment should be available.

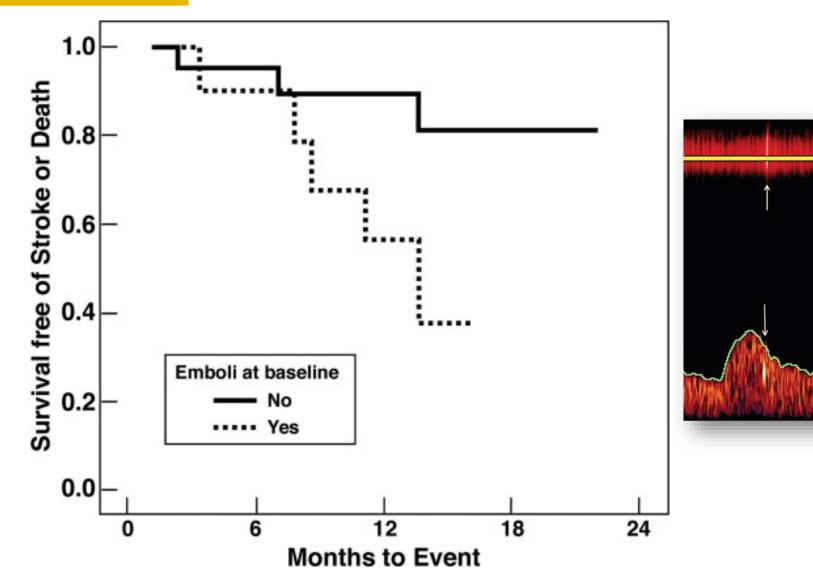
There should be a latent stage of the disease.

There should be a test or examination for the condition.

The test should be acceptable to the population.

The natural history of the disease should be adequately understood.

There should be an agreed policy on whom to treat.


The cost of finding a case should be balanced in relation to overall medical expenditure.

Microembolic Signals (MES)

Transcranial Doppler embolus detection could identify the proportion of patients who would be at high enough risk to benefit CEA/CAS

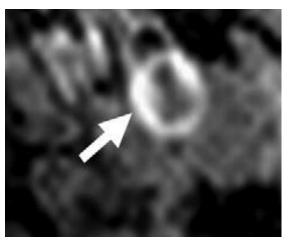
Identification of the Unstable Carotid Plaque Using Ultrasound

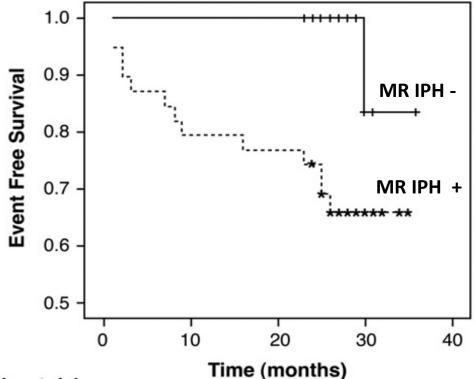
The presence of a *juxtaluminal black area of > 8 mm*² in a plaque (CAP), without a visible echogenic cap, identified a group of patients (21%) that had an average annual stroke rate of 4.1%.

Independent predictors of risk:

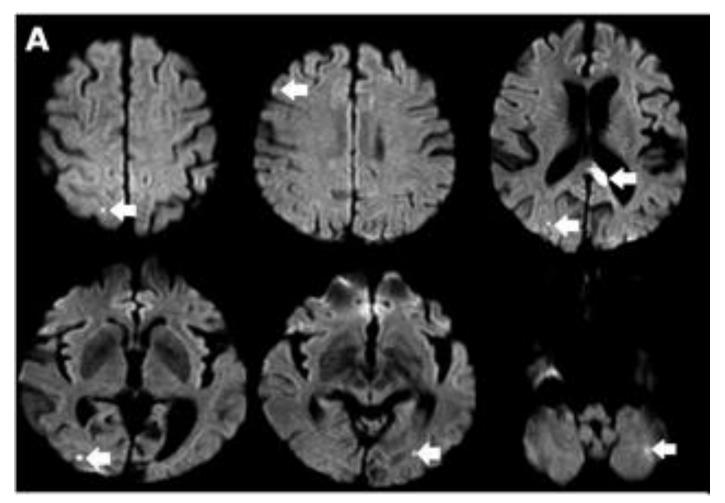
- 1. baseline degree of stenosis
- 2. history of contralateral stroke or TIA
- 3. size of black juxtaluminal CAP $\ge 8 \text{ mm}^2$
- 4. presence of discrete white areas in a hypoechoic CAP

Identification of the Unstable Carotid Plaque Using MRI


Intraplaque hemorrhage increases necrotic core size and plaque volume and can be considered is a marker of plaque instability


Paraskevas et al. Stroke 2014

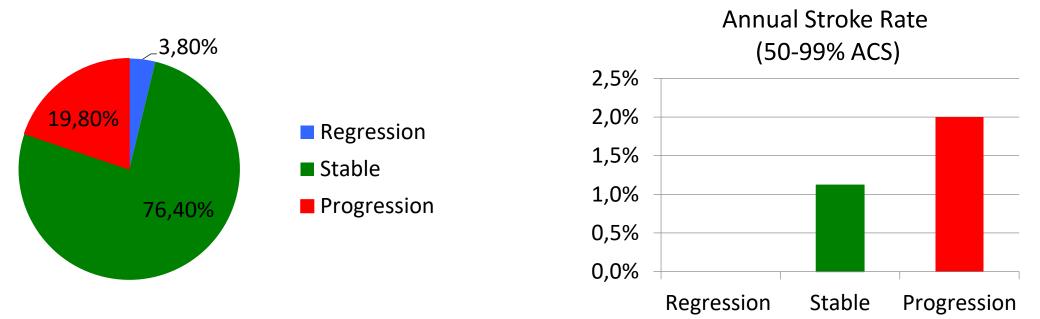
In a study of 75 men with 50% to 70% ACS, MRI identified the presence of intraplaque hemorrhage in 36 (36.7%) of 98 carotid arteries. In this high-risk group, 2 strokes and 4 TIAs occurred during a 2 years follow-up. Strokes or TIAs did not develop in the patients without intraplaque hemorrhage.



Altaf N et al. J Vasc Surg. 2008

Identification of the Unstable Carotid Plaque Using Head CT/MRI

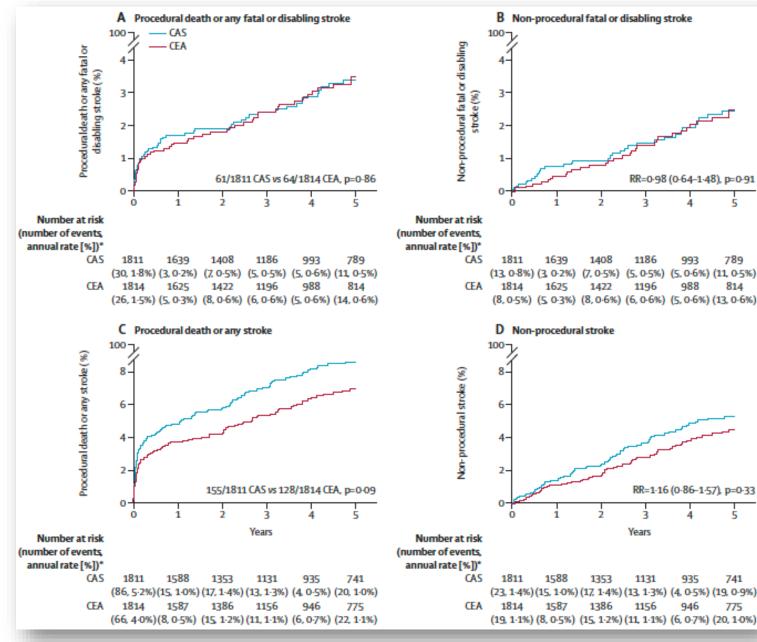
Embolic infarcts were present in 9.6% of the patients with 60% to 99% stenosis in relation to the normal distal internal carotid.


This high-risk group which had an average annual stroke rate of **3.5% thus suggetsing that** ACS patients found to have prior infarcts should be referred for revsacularization.

Eugenio Stabile, MD, PhD, FESC

Paraskevas et al. Stroke 2014

The role of Progression in the Severity of ACS



For patients with 80% to 99% baseline stenosis, the annual stroke rate was 1.7% in the absence and 3.1% in the presence of progression.

In this study the incidence of plaque progression was inversely proportional to the severity of baseline stenosis and that both baseline stenosis and progression were independent predictors of stroke risk.

Paraskevas et al. Stroke 2014

Latest Data from : ACTS – 2

The difference is due to the highest incidence of nondisabling strokes in CAS

Eugenio Stabile, MD, PhD, FESC

Haliday A et al. The Lancet 2021

Class^a

lla

Level^b

С

	Name	Nur	nber
Filter		1097	69%
	Filterwire	391	
	Emboshield	327	
	Spider	241	
	Accunet	78	
	Angioguard	55	
	Other	5	
Proximal occlusion		238	15%
	Moma	204	
	Gore flow reversal	27	
	Other	7	
Distal balloon		9	1%
None*		244	15%
Total		1588	100%

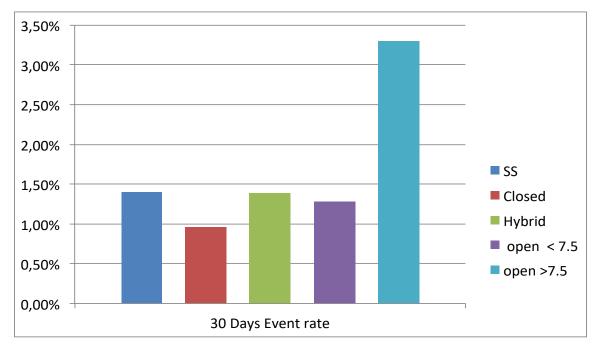
* 8 centres decided generally not to use any cerebral protection device

Recommendation

carotid artery stenting.

The use of embolic protection devices

should be considered in patients undergoing

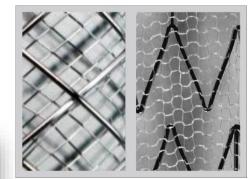

Embolic protection device

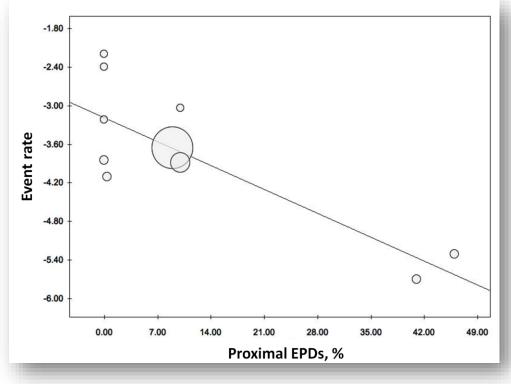
was not used in as much as

15% of patients

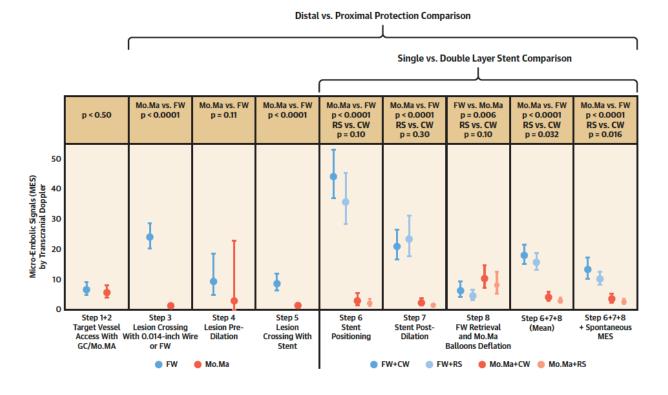
Post CAS 30 days stroke rate according to stent design and cell area (mm²)

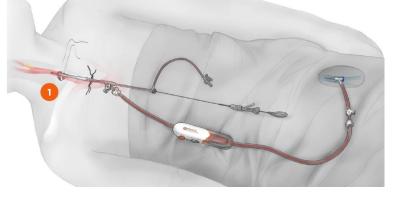
Stabile E et al. EuroIntervention 2016


Open cell designed stents with large cell area were used in used in as much as 20% of patients


	Stent name	Nun	nber
Closed cell		739	47%
	Wallstent	469	
	XAct	261	
	Other	9	
Open cell		482	30%
	Precise	198	
	Protege Rx	144	
	Rx Acculink	122	
	Other	18	
Hybrid		180	11%
-	Cristallo Ideale	170	
	Other	10	
Membrane		176	11%
	Roadsaver	109	
	CGuard	67	
Other		11	1%
Total		1588	100%

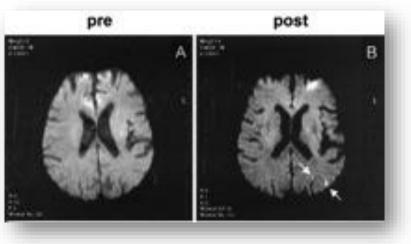
Double layered stents for carotid angioplasty: A meta-analysis of available clinical data


Anna Sannino, MD^{1,2*} | Giuseppe Giugliano, MD, PhD^{1,2*} | Evelina Toscano, MD^{1,2} | Gabriele G. Schiattarella, MD^{1,2} | Anna Franzone, MD, PhD^{1,2} | Tullio Tesorio, MD³ | Bruno Trimarco, MD^{1,2} | Giovanni Esposito, MD, PhD^{1,2} | Eugenio Stabile, MD, PhD^{1,2} ©


Carotid Wallstent Versus Roadsaver Stent and Distal Versus Proximal Protection on Cerebral Microembolization During Carotid Artery Stenting

Sannino A et al . Cath Cardivasc Int 2018

Montorsi P. et al. J Am Coll Cardiol Intv 2020


Transcarotid revascularization (T-CAR)¹

DW-MRI parameters	All $(n = 31)^{n}$
Number of subjects with DW-MRI lesion(s)	
pre- and postprocedure	1 (3.2%)
Number of subjects with new DW-MRI lesion(s)	
postprocedure	5 (16.1%)
Total number of new DW-MRI lesion(s)	
postprocedure	18
Number of new DW-MRI lesion(s) per subject	
postprocedure (min, max)	3.6 (2,9)

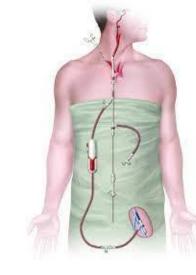
DESERVE Study: 26% of subjects with new DW-MRI lesion (s) post procedure ²

¹ Pinter et al. J Vasc Surg 2011. ² Stabile et al. Int J Cardiol 2013

30-days outcomes

ROADSTER 1

Intent to Treat (n=141)	
All Stroke	1.4%
Death	1.4%
MI	0.7%
Stroke/Death	2.8%
Stroke/Death/MI	3.5%


Per Protocol (n=136)	
All Stroke	0.7%
Death	1.5%
MI	0.7%
Stroke/Death	2.2%
Stroke/Death/MI	2.9%

Investigators experienced in carotid surgery and intervention

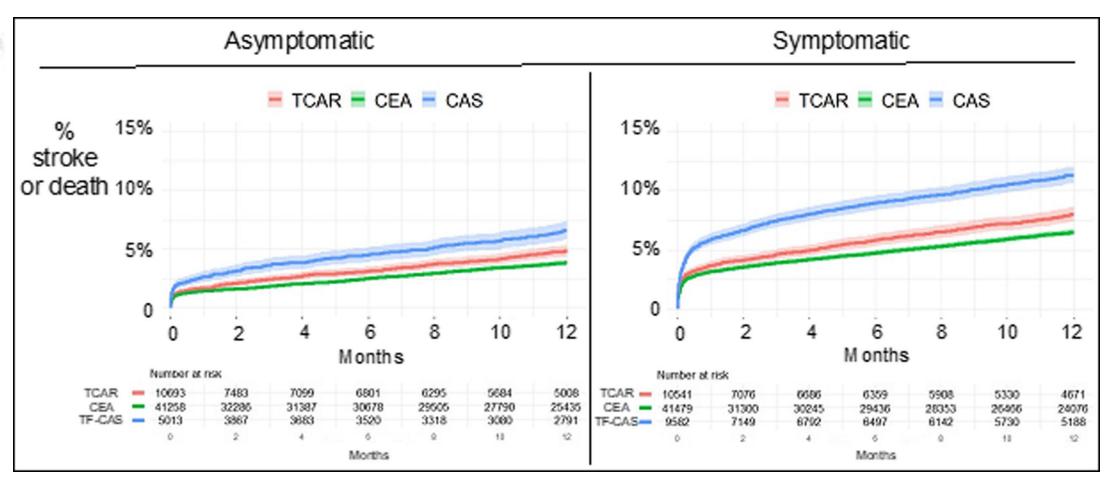
ROADSTER 2

Intent to Treat (n=692)		
Procedural Success	96.5%	
Stroke	1.9%	
Death	0.4%	
Stroke/Death	2.3%	
Stroke/Death/MI	3.2%	
CNI*	1.4%	

Per Protocol (n=632)		
Procedural Success	97.6%	
Stroke	0.6%	
Death	0.2%	
Stroke/Death	0.8%	
Stroke/Death/MI	1.7%	
CNI*	1.3%	

81% of Physician were new to TCAR

Kwolek C. J. J Vasc Surg 2015



Eugenio Stabile, MD, PhD, FESC

Kashyap V. S. et al. AHA 2020

Kaplan–Meier estimated rate of stroke after TCAR, CEA, and TF-CAS, stratified by presenting neurologic symptom status


Eugenio Stabile, MD, PhD, FESC

Columbo JA et al. JAHA 2022

High	risk features for CEA	High risk Feature for CAS		High risk feature for TCAR	
Anatomic	Clinical	Anatomic	Clinical	Anatomic	Clinical
	•	High-grade aortic arch atheroma	Elderly (>70 y)	Lesions that are <5 cm cranial to the clavicle	Obesity
ilpsilateral neck irradiation	Chronic coronary syndrome (CCS III/IV)	Type II/III aortic arch	Bleeding disorder	severe target vessel tortuosity	
Cervical kyphosis or immobility		Stenosis at origin of great vessels	Severe aortic stenosis	small CCA (<6 mm)	
Contralateral carotid artery occlusion	Recent myocardial infarction (<30 d)	>2 acute (90°) bends of the target vessel	Chronic renal failure	Severe calcification or the presence of thrombus in the CCA	
Contralateral laryngeal palsy	Planned open heart surgery (<30 d)	Circumferential lesion calcification	Decreased cerebral reserve	Depth of CCA, which make access difficult	
Tracheostoma	Severe aortic valvular disease	Lesion-related thrombus			
Prior ipsilateral CEA or other neck surgery	Oxygen and/or steroid dependent pulmonary disease	Tandem lesions			
Short neck	Chronic renal failure	Unable to use EPD			
	Advanced age				

High-Risk Features for Periprocedural Complications

- Equality between CEA, CAS, TCAR... has been achieved
- Technical and technological advancement will help to obtain a further improvement in acute and long term results
- There is a decreasing interest for CAS (and carotid revascularization) ... and we should get togheter to understand the what's going on....

