

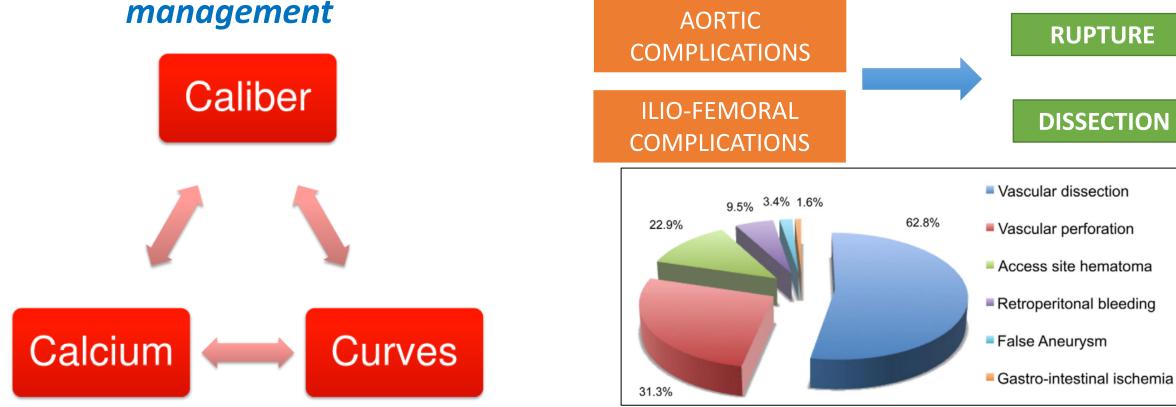
13 e 14 Novembre 2023 Villa Doria D'Angri - Via F. Petrarca 80, Napoli

Presidente del congresso: Dr. Ciro Mauro

Direttore UOC di Cardiologia UTIC con emodinamica AORN Cardarelli, Napoli

HOW TO MANAGE COMPLEX VASCULAR ACCESS

Angelo Cioppa, MD



Division of Invasive Cardiology «Montevergine» Cinic Mercogliano- Avellino - Italy

The 3C's of the TF access management

VASCULAR COMPLICATIONS

Généreux et al. Vascular Complications After Transcatheter Aortic Valve Replacement Insights From the PARTNER Trial. *JACC 2012.* 1043–52.

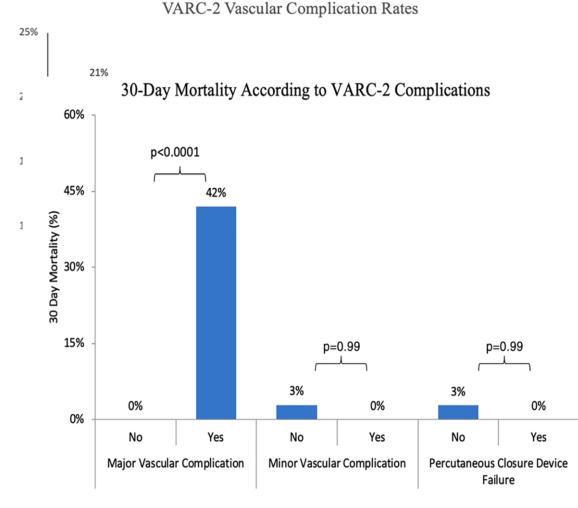
INCIDENCE OF VASCULAR COMPLICATIONS

Among patients who had endovascular aneurysm repair (EVAR), the incidence of hematoma and/or hemorrhage without the need for blood transfusion or reintervention was 2.8%, the incidence of blood transfusion was 11.4%, and the incidence of reintervention was 0.6%. Among patients who underwent transcatheter aortic valve replacement (TAVR), the incidence rates were 9.1%, 24.3%, and 1.1%, respectively. The incidence rates for patients who had percutaneous ventricular assist device (PVAD) implant were 10.1%, 17%, and 2.6%, respectively. 17,672 patients from national inpatient sample.Overall bleeding complications occurred in 17.7% of patients

- Bleeding had higher:
- Mortality

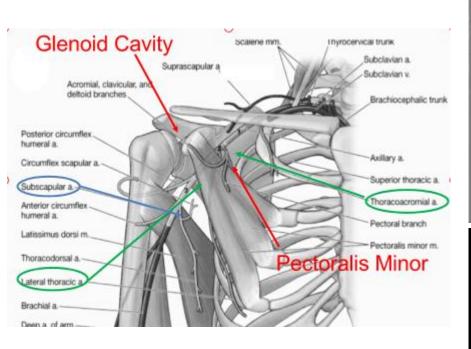
– Cost

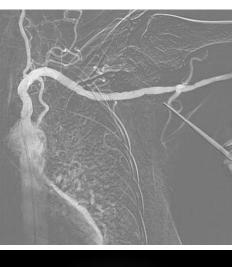
- Longer Hospital Stay

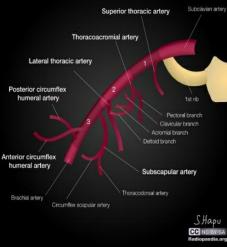


Redfors, B et al. Mortality, Length of Stay, and Cost Implications of Procedural Bleeding After Percuta neous Interventions Using Large-Bore Catheters. JAMA Cardiol. 2017 Mar 18

TRANSFEMORAL ACCESS


- Completely percutaneous TF-TAVR is an important advance in technique.
- The advantages of this minimally invasive technique include quicker recovery, shorter length of stay, lower procedural costs and lower rates of wound infection compared to TAVR performed with femoral artery surgical cutdown techniques
- Major VCs, but not minor VCs or PCDFs, are associated with increased mortality.
- PCDFs are associated with a longer median longer hospitalization.

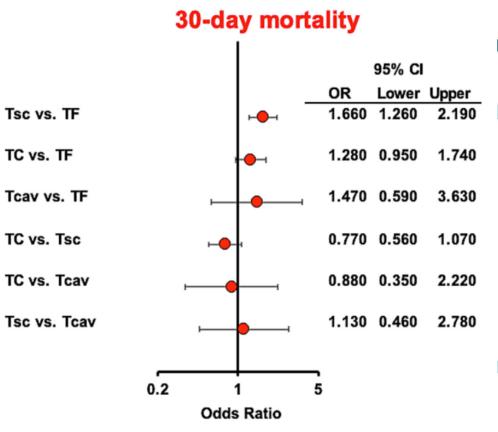




ALTERNATIVE ACCESS: Axillary Artery

Axillary access

Registry to Monitor Safety (ARMS)


UW: James McCabe, Bill Lombardi Newark Beth Israel: Raj Tayal DMC: Ted Schreiber, Amir Kaki, Nimrod Blank Tufts: Navin Kapur Columbia: Ajay Kirtane, Jeff Moses, Amir Masoumi Mid America Heart: Aaron Grantham, Patrick Goleski Beth Israel Deaconess: Duane Pinto, Robert Yeh WellspanYork: Bill Nicholson University of Arizona: Kapil Lotun

- -97.5% implant success rate
- Poor femoral access 66%
 - (*) 34% Primary choice
- Anterior chest wall approach 76%
- -54% right sided access
- -Complication rates: 78% = none
- -4% access site hematoma, 0% death related, 3% transfusion rate, 0% PTX, 3% Neuro complaints
- -Average duration 4.5 days +/-3.9 days, longest 21 days

COMPARISON BETWEEN VASCULAR ACCESS FOR TAVR

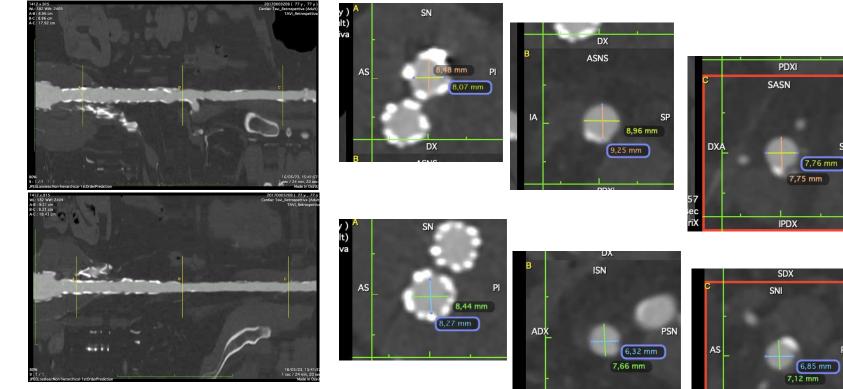
- The risk of major or life-threatening bleeding was higher via Tsc compared with TF
- The risk of stroke was higher via Tsc compared with TF and Tcav
- The risk of major vascular complications was lower via TF compared with Tsc, and Tcav and higher with Tcav compared with TF and Tsc.
- Tsc was associated with higher risk of major or life-threatening bleeding compared with TF, and higher risk of stroke compared to TF and Tcav.
- Tcav had the highest risk of major vascular complications
- ✤ 30-day mortality was higher via Tsc compared with TF.

Vascular Planning Multidetector Computed Tomography Angiography

Structural Heart Disease

Transfemoral Access Assessment for Transcatheter Aortic Valve Replacement Evidence-Based Application of Computed Tomography Over Invasive Angiography

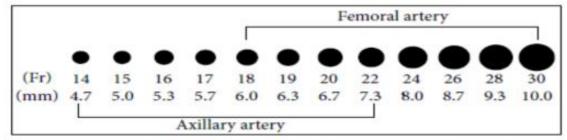
Kazuaki Okuyama, MD; Hasan Jilaihawi, MD; Mohammad Kashif, MD; Nobuyuki Takahashi, MD; Tarun Chakravarty, MD; Heera Pokhrel, MD; Jigar Patel, MD; James S. Forrester, MD; Mamoo Nakamura, MD; Wen Cheng, MD; Raj R. Makkar, MD Conclusions—Contrast CT has a greater predictive value for post-transcatheter aortic valve replacement vascular complications than angiography. Because these complications increase mortality, an accurate assessment of the vasculature is a critical component of proper access selection. (Circ Cardiovasc Imaging. 2015;8:e001995. DOI: 10.1161/CIRCIMAGING.114.001995.)


- Reliably examine vessel size
- Degree of calcification
- Minimal luminal diameter
- Plaque burden
- Vessel tortuosity
- High-risk features (including dissection and atheroma)
- You get to know the vessel really well before you even touch it...

Multidetector Computed Tomography Angiography

Negative attributes : Contrast use

Vascular Complications in PARTNER It is all about Size(Caliber)

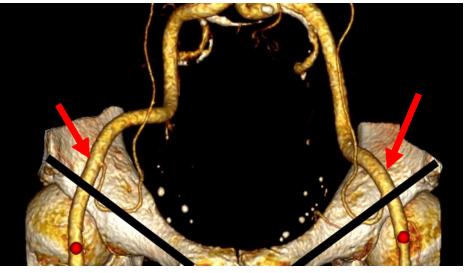

ble 2 Procedural Characteristics According to the Occurrence of VCs up to 30 Days

	Major Vascular Complications ($n = 64$)	No Major Vascular Complications (n = 355)	Combined (n = 419)	p Value
Valve size				
23 mm (22-F sheath introducer)	60.3% (38/63)	49.3% (169/343)	51.0% (207/406)	0.11
26 mm (24-F sheath introducer)	39.7% (25/63)	50.7% (174/343)	49.0% (199/406)	0.11
Femoral vessel diameter,* mm	7.94 ± 1.07 (49)	8.39 ± 1.28 (297)	8.32 ± 1.26 (346)	0.007
Ext Iliac vessel diameter,* mm	8.29 ± 1.46 (49)	8.71 ± 1.38 (298)	8.65 ± 1.40 (347)	0.02
Iliac vessel diameter,* mm	9.07 ± 1.94 (49)	9.70 ± 1.71 (298)	9.61 ± 1.75 (347)	0.009
SEIAR	1.08 ± 0.16 (49)	0.99 ± 0.23 (298)	1.00 ± 0.22 (347)	0.02
SFAR	1.11 ± 0.13 (49)	1.03 ± 0.24 (297)	1.04 ± 0.23 (346)	0.01
Severe tortuosity†	0.0% (0/53)	3.2% (10/315)	2.7% (10/368)	0.37
Severe calcification‡	5.7% (3/53)	5.7% (18/315)	5.7% (21/368)	1.00
*!+-				

Transparency for sheath outer diameters (in mm not French) is necessary to refine decision making →Calcification, stenosis, or tortuosity

- \rightarrow Vessel size
- → Vessel Depth (obesity)
- → Graft material
- → Duration of Implant

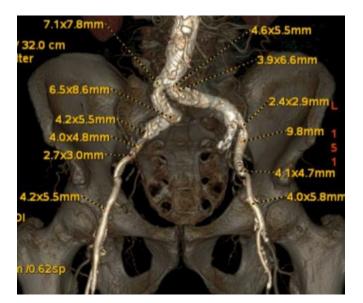
Genereux et al. JACC. 2012.1043-52

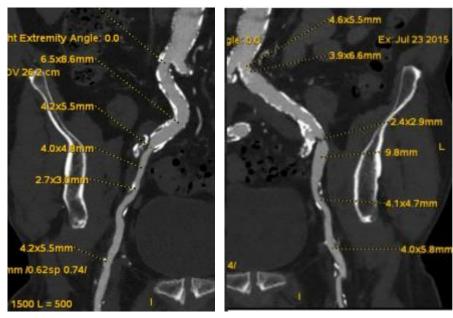

(a) Relative French sizes of the axillary artery compared to the femoral artery

CT pre operating planning

Ilio-femoral axis to choose **Biforcation of CFA** Diameter Tortuosity, **Calcifications Distance skin to artery**) **Pre-Localize the puncture site** between Inguinal Ligament (IL) and femoral biforcation (FB)

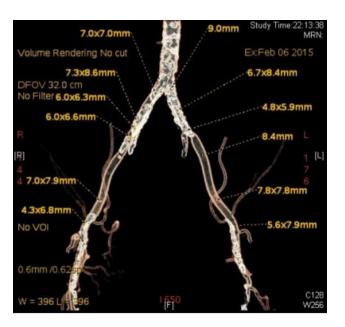
Inferior Epigastric Artery NEVER erises below Inguinal Legament

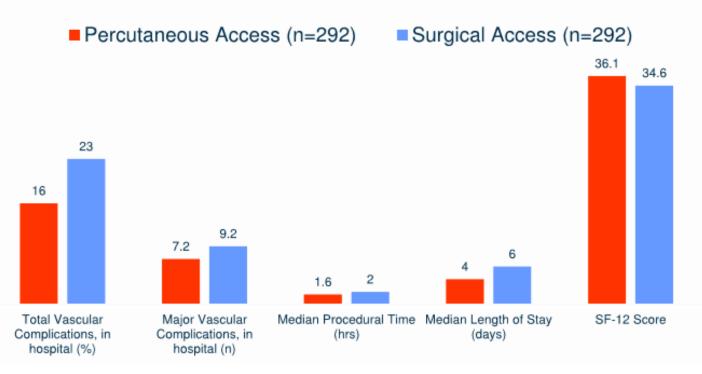



Two Areas of Concern in the Iliofemoral Tree

Puncture Site

External Iliacs Generally Least Concerning





Cutdown Offers No Clear Upfront Advantage to

Large Bore Access

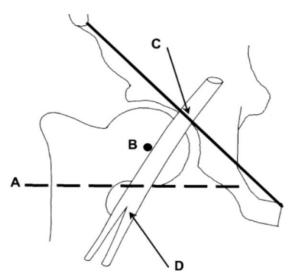
Periprocedural Outcomes in Propensity-Matched Patients

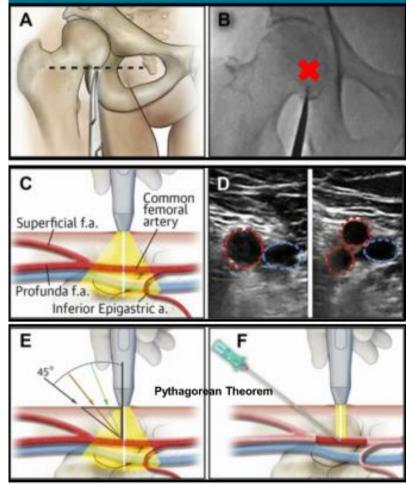
McCabe et al. AJC. 2016; 117(10):1643-50

A good femoral puncture Puncture Site is crucial

ANATOMY

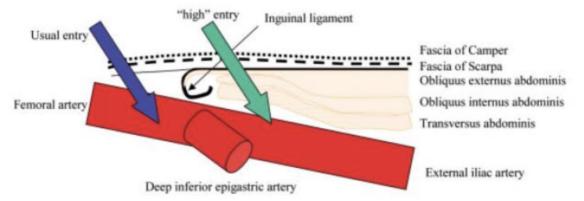
Size ≥ 5.0 mm (or SFAR < 1.05) No anterior calcium at puncture site





Below inguinal ligament (inferior epigastric artery)

≥ 1 cm above femoral bifurcation Centre of anterior wall



-- Sandoval et al JACC Interv 2017

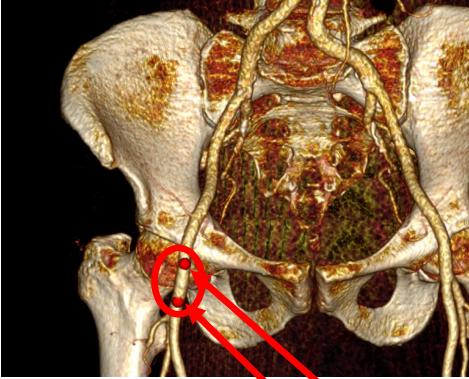
How to have a good femoral puncture Evoid Puncture too high!!!

Puncture above IL = high risk of retroperitoneal bleeding

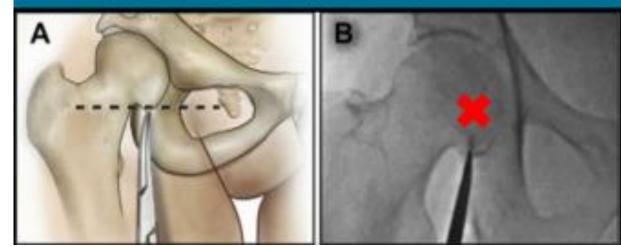
Correlates and Outcomes of Retroperitoneal Hemorrhage Complicating Percutaneous Coronary Intervention

tephen G. Ellis," мо, Deepak Bhatt, мо, Samir Kapadia, мо, David Lee, м Michael Yen, мо, and Patrick. L. Whitlow. мо

Accidental Inferior Epigastric Cannulation /injury Bleeding retroperitoneal hematoma) Pseudoaneurysm


TABLE II. Independent Correlates of Retroperitoneal Bleeding

	OR	95% CI	P-value
Sheath placement superior to inferior epigastric artery ^a	17.6	2.21-141.63	< 0.001
Female sex	3.73	2.55-5.43	< 0.001
Angioseal TM	2.80	1.95-4.00	< 0.001
GP IIb/IIIa inhibitor	1.92	1.31-2.82	0.001
Weight (per kg)	0.987	0.976-0.997	0.014
Acute MI	1.82	1.05-3.17	0.035


Evoid Puncture too low!!!

Femoral Head is a compressible site

YES NO

Bifurcation injury Bleeding (groin) Arteriovenous fistula VCDs failure

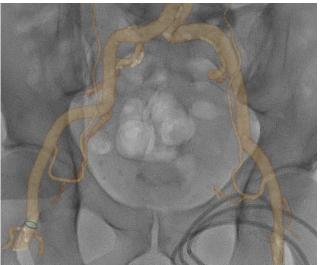
Evoid Fluoroscopic Puncture!!! Even if you know the CT-Scan derived puncture site, could be unreliable

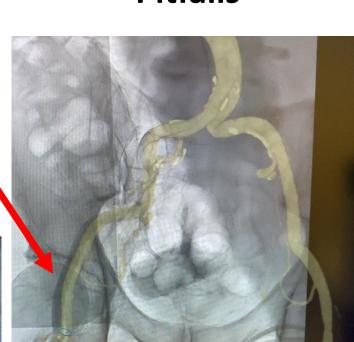
CLINICAL RESEARCH

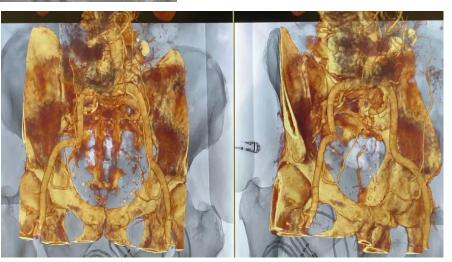
Impact of femoral artery puncture using digital subtraction angiography and road mapping on vascular and bleeding complications after transfemoral transcatheter aortic valve implantation

hamed El-Mawardy12, MD; Bettina Schwarz1, MD; Martin Landt1, MD MD: Julia Kebernik¹, MD: Abdelhakim Allali¹, MD: Bioern Becker¹, MD: Coele¹ MD: Gert Richardt¹ MD: Mohamed Abdel-Wahab^{1*} MD FFS

Table 5. Thirty-day outcome.

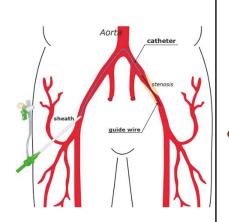

Variable	Road map group (n=160)	Control group (n=160)	<i>p</i> -value
All-cause mortality	6 (3.7%)	5 (3.1%)	0.76
Cardiovascular mortality	6 (3.7%)	5 (3.1%)	0.76
Any stroke	6 (3.7%)	11 (6.8%)	0.21
Life-threatening bleeding	11 (6.8%)	18 (11.3%)	0.17
Major bleeding	23 (14.4%)	41 (25.6%)	0.01
Minor bleeding	7 (4.3%)	3 (1.8%)	0.19
Major vascular complications	7 (4.3%)	19 (11.8%)	0.01
Minor vascular complications	7 (4.3%)	5 (3.1%)	0.50
Access site-related complications	13 (8.1%)	22 (13.8%)	0.1




Vessel Navigator

Angio-Guided Puncture Vessel Navigator Pitfalls

Very useful to reduce CM volume (avoid CT-Scan double bolus) Only 25 ml Volume Rendering and Centerline Precise puncture similar to conventional Angio-guided Puncture



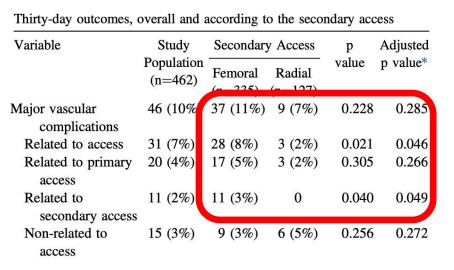
Angio-Guided Puncture To reduce vascular access complications

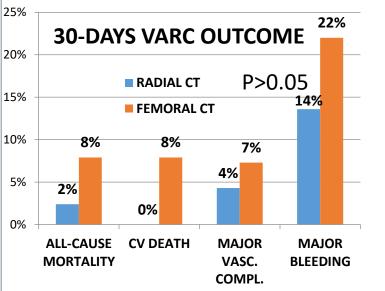
CONTRAL COMMON FEMORAL ARTERY CROSSOVER TECHNIQUE

Challenging in diffusely diseased, tortuous vessel or narrow iliac bifurcation

RADIAL ANTEGRADE TECHNIQUE

- No need for bilateral femoral punctures
- No negotiation with ilio-femoral tortuosity
- More direct route and efficient wiring of the therapeutic access site

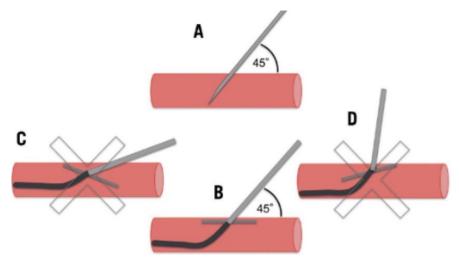



A Comparison of the Femoral and Radial Crossover Techniques for Vascular Access Management in Transcatheter Aortic Valve Implantation: The Milan Experience

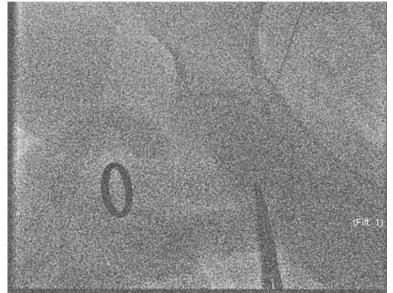
TRANSFEMORAL TAVI PATIENTS RECEIVING FEMORAL CT (n= 41)

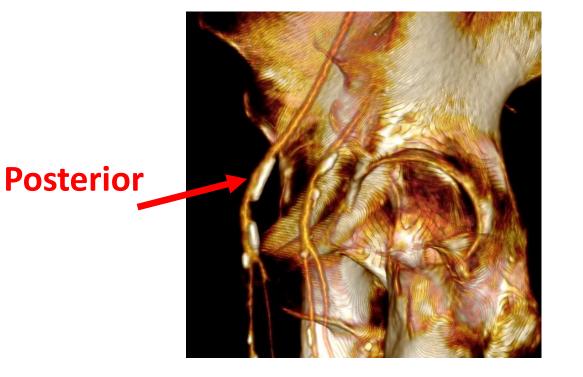
VS

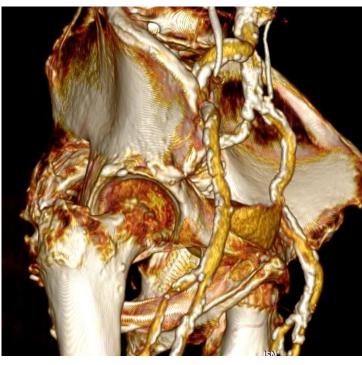
TRANSFEMORAL TAVI PATIENTS RECEIVING RADIAL CT (n= 46)


Curran H et al, Catheterization and Cardiovascular Interventions, 2013

Evoid vertical or too tangenzial puncture!!!

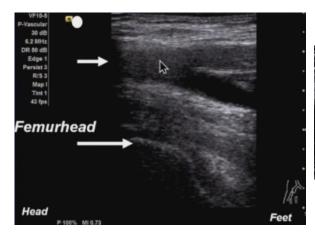

The angle of puncture influences Proglide results

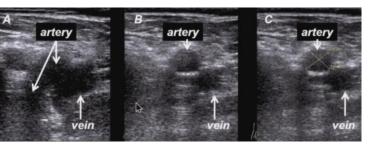

How to improve the Pro-Glide performance


Meticulous tunneling of the skin and subcutaneous tissues separates the skin surface and artery

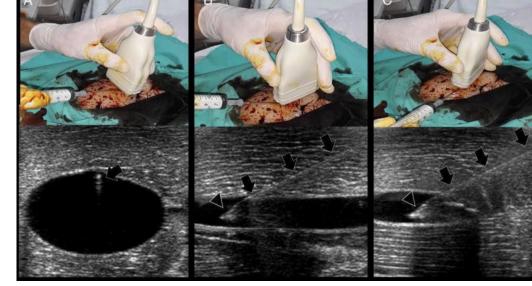
Evoid Anterior Calcification Puncture!!!

Most of hemostasis devices doesn't work properly





Echo-Guided Puncture


Longitudinal View

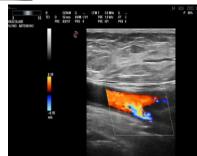
Cross-Sectional View (distal to proximal)

- No x-rays
- No CM

- Avoidance of posterior wall puncture
- Identification of plaques/calcium
- Avoidance of venopuncture

JACC: CARDIOVASCULAR INTERVENTIONS © 2010 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

ISSN 1936-8798/536.00 DOI: 10.1016/j.jcin.2010.04.015


VOL. 3, NO. 7, 2010

Real-Time Ultrasound Guidance Facilitates Femoral Arterial Access and Reduces Vascular Complications

FAUST (Femoral Arterial Access With Ultrasound Trial)

Arnold H. Seto, MD, MPA,* Mazen S. Abu-Fadel, MD,† Jeffrey M. Sparling, MD,† Soni J. Zacharias, MD,† Timothy S. Daly, MD,† Alexander T. Harrison, MD,* William M. Suh, MD,* Jesus A. Vera, MD,* Christopher E. Aston, PHD,‡ Rex J. Winters, MD,§ Pranav M. Patel, MD,* Thomas A. Hennebry, MB, BCH, BAO,† Morton J. Kern, MD*

Echo-Guided Puncture

Table 3. Intraprocedural Outcomes

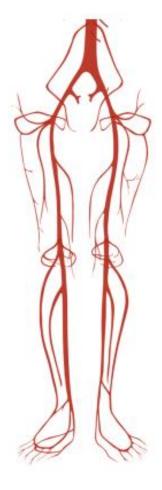
Characteristic	Fluoroscopy (n = 500)	Ultrasound (n = 502)	p Value
Number of attempts	3.0 ± 3.2	1.3 ± 0.9	<0.000001
First pass success	232 (46.4%)	415 (82.7%)	< 0.000001
Venipuncture	79 (15.8%)	12 (2.4%)	< 0.000001
Number of arterial punctures	$\textbf{1.14} \pm \textbf{0.43}$	1.09 ± 0.36	0.076
Mean time to insertion, s	213 ± 194	185 ± 175	0.016
Median time to insertion, s	148 (102–242)	136 (90–212)	0.003

Values are mean \pm SD, n (%), or median (interquartile range)

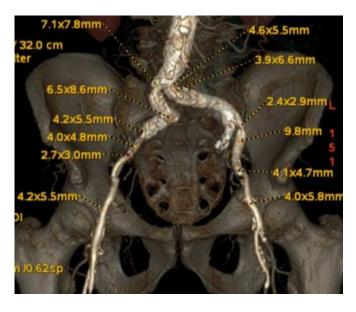
Table 4. Vascular Access Complications Fluoroscopy Ultrasound Complication (n = 501)(n = 503)p Value 11 (2.2%) Hematoma \geq 5 cm 3 (0.6%) 0.034 Pseudoaneurysm 0 1 NS 2 3 NS Dissection Access bleeding, transfusion 2 1 NS Hematoma with DVT 0 NS 1 Any complication 17 (3.4%) 7 (1.4%) 0.041

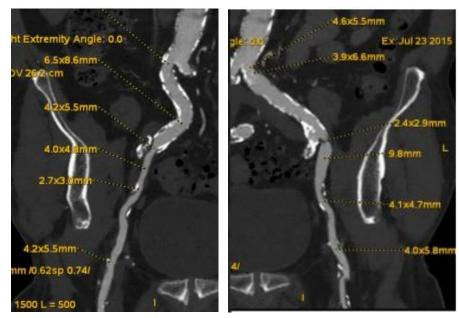
Values are n (%) or n.

DVT = deep venous thrombosis.

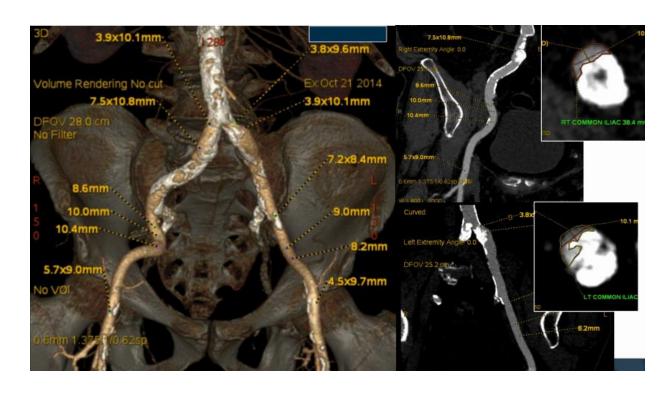

Minor Number of attempts Better First Time Access Less Venopuncture Less time of inserction

NO Differences in Vascular Access Complications

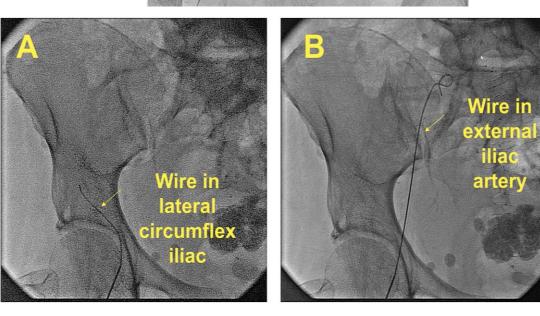



Two Areas of Concern in the Iliofemoral Tree

Ostial CIA
 Puncture Site

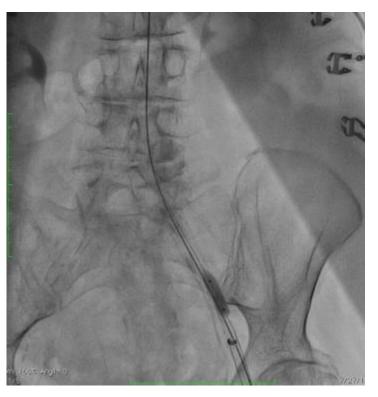

External Iliacs Generally Least Concerning

Ostial Common Iliac Concern with Ostial CIA is Disruption of the Aorta



If resistance: DO NOT PUSH!!!

1216


Why you should have wire in during femoral angiography

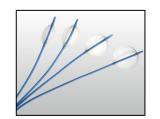
Tortuosity (Curves) Consider Secondary Access from the radial Shallow Angle Stick Important

Straight down can be easier than up & over

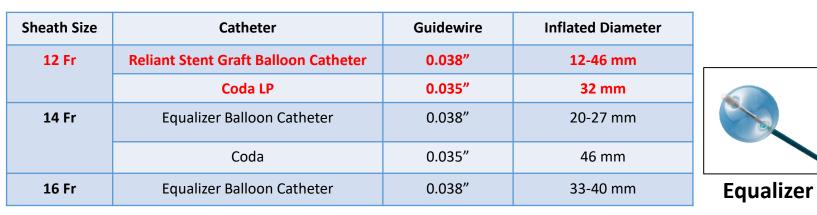
Shallow Angle Stick Prevents Creating an Additional Flex Point

GUIDEWIRES

Diameter (inch)	Product Name	Length (cm)	Тір Туре
	Hi-Torque Supracore	145-190-300	Straight
0.035″	Boston Sch. Safary XS S M	180-260	Curved Pig-Tail shape
	Radifocus Guidewire Stiff M	180-300	Straight, 45° angle
0.018"	V18	110-300	Straight
	Radifocus Guidewire Advantage	180-300	Straight, 45° angle
	HT Command	210-300	Shapeable nitinol


AORTIC COMPLICATIONS

RUPTURE

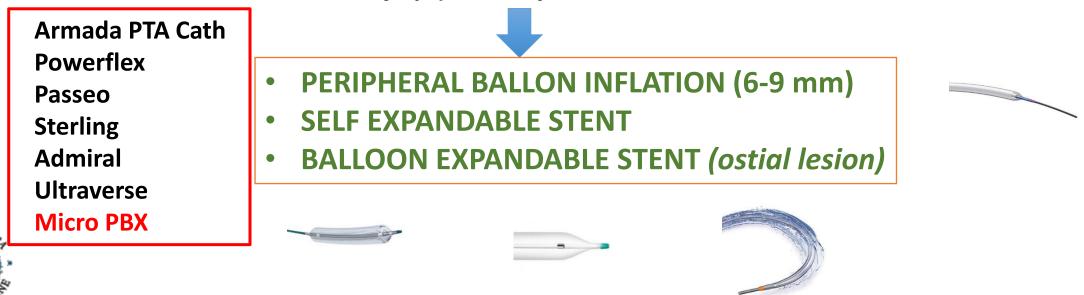

DISSECTION

Trauma from valve delivery system on atheromasic and tortuous aorta

ENDOVASCULAR OCCLUSION WITH OCCLUSION BALLONS EMERGENCY SURGERY/COVERED STENT

Reliant

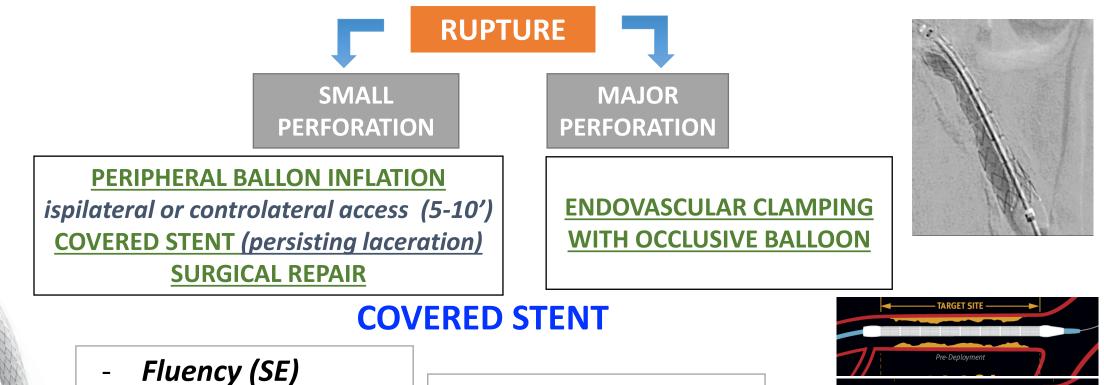
Coda



ILIO-FEMORAL COMPLICATIONS DISSECTION

- HIGH-PROFILE DEVICE THROUGH CALCIFED OR FRAGILE VESSEL
 - PRE-EXISTING INTIMAL DAMAGE
 - NOT CO-AXIAL PUSHING OF THE DEVICE

If extensive or flow-limiting can be associated with vessel occlusion (due to superimposed acute thrombosis or obstructive flaps) and may cause acute limb ischemia


Gore Viabahn (SE)

Advanta V12 (BE)

Endoprosthesis (SE)

HOT TOPICS IN CARDIOLOGIA 2023

ILIO-FEMORAL COMPLICATIONS

ZISA DI CUR

- BeGraft (BE)
 - Viabahn VBX(BE)
 - I-Cover(BE)

OTHER USEFUL DEVICES:

Shockwave: Peripheral Lithoplasty System

MINIMIZE TRAUMA - Minimize trauma to soft tissue by safely selecting and fracturing intimal and medial calcium

OPTIMIZE OUTCOMES - Optimize outcomes while reducing complications and cost escalation

SIMPLIFY PROCEDURES - Simple and intuitive system that makes complex calcified procedures more predictable

Size: Select Balloon using 1:1 (catheter to vessel RVD) sizing protocol

DIAMETER (mm)	LENGTH (mm)	Max Pulse Count	GUIDEWIRE COMPATIBILITY (in)	SHEATH COMPATIBILITY	WORKING LENGTH (cm)
3.5	60	180	0.014	6F	110
4	60	180	0.014	6F	110
4.5	60	180	0.014	6F	110
5	60	180	0.014	6F	110
5.5	60	180	0.014	6F	110
6	60	180	0.014	6F	110
6.5	60	180	0.014	7F	110
7	60	180	0.014	7F	110

Femoral access complications

- Lower extremity ischemia
- Bleeding (groin/retroperitoneal hematoma)
- Pseudoaneurysm
- Arteriovenous fistula
- Infection
- Nerve injury

Lower extremity ischemia Treat

Dissection

Causes

- Thrombosis
- Distal embolization
- Vascular closure device complications
- Occlusive sheath
- Prolunged sheath dwelling time
- Poor sheath management tecnique
- Prolonged femoral artery compression
- Suboptimal anticoagulation

Treatment

- Controlateral femoral access and angiography
- Endovascular RX
- Surgery

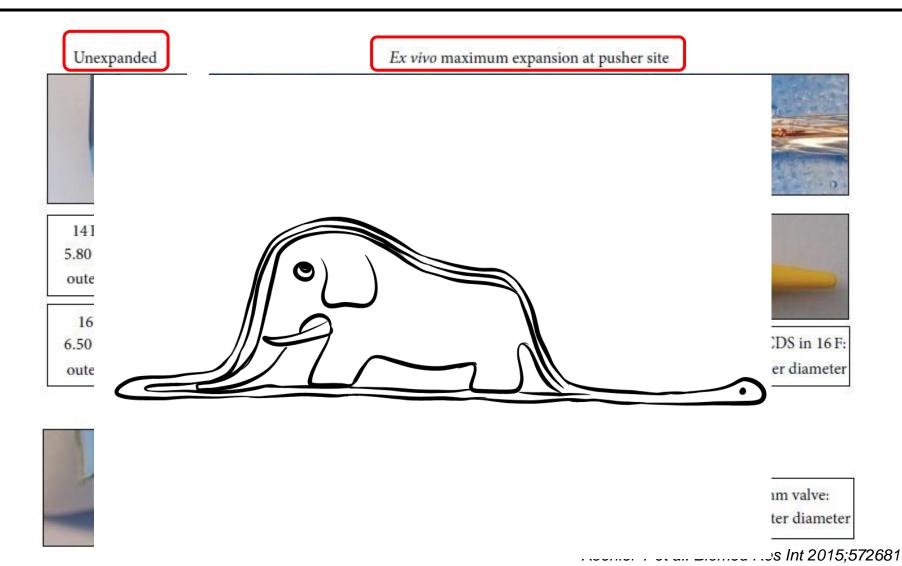
Femoral access bleeding Prevention

- High puncture
- Back wall puncture
- Anticoagulation/GP IIb/IIIa inhibitors/cangrelor

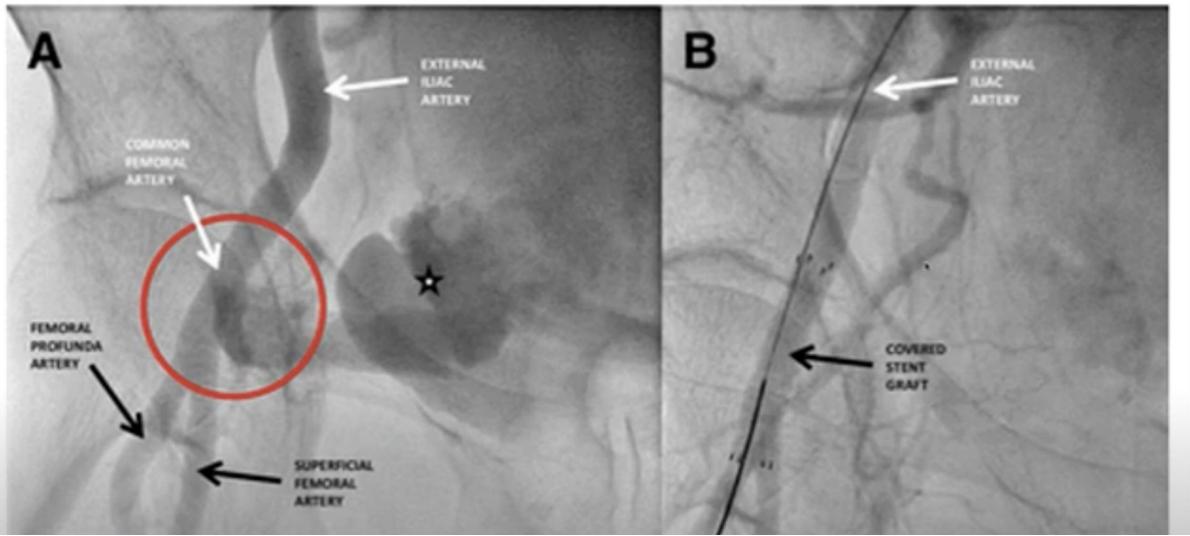
Causes

- Hypertension
- Inadvertent perforation of renal or lumbar arteries

- Meticulous access technique (fluoroscopy, US, femoral angiography)
- Advance guidewires with fluoroscopic guidance
- Control hypertension
- Attention to therapy


Treatment

- Groin hematoma: manual pressure/endovascular, surgery (rare cases)
- Retroperitoneal hematoma: conservative, endovascular, surgery

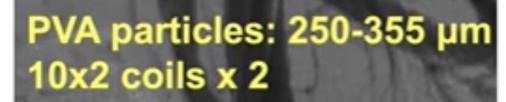


What about expandable sheaths?

HOT TOPICS

Surgery - death

6


Femostop

HOT TOPICS

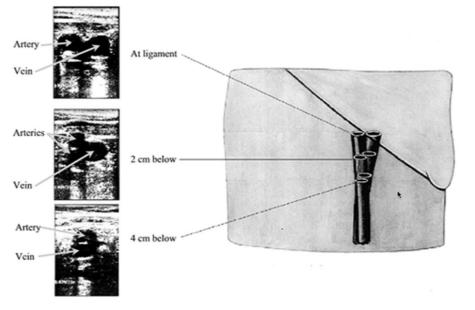
HOT TOPICS

Medial circumflex iliac perforation

Coils

AV-fistula

Causes


- 1. Low puncture
- 2. Multiple arterial punctures
- 3. Access to both artery and vein

Prevention

- 1. Optimal access technique
- 2. Remove arterial sheath first, then venous sheath

Treatment

- 1. Usually not needed
- 2. Covered stent surgery

Hughes. Anaesthesia 2000;55: 1198-1202

HOT TOPICS IN CARDIOLOGIA 2023

Pseudoaneurysm

Causes

- 1. Low stick
- 2. Suboptimal compression
- 3. Challenging access
- 4. Access of both artery+vein
- 5. Intensive anticoagulation
- 6. Vascular closure device failure

Meralgia paresthetica

Causes

- 1. Direct injury from needle
- 2. Nerve compression from hematoma or pseudoaneurysm

Prevention

1. State-of-the-art access technique

and the second second

Treatment

1. Conservative

Treatment

<2 cm: conservative

≥2 cm:

- US-guided thrombin injection
- US compression
- Surgery (>6 cm, synthetic graft, infection, limb ischemia, skin necrosis)

Access site infection

Causes

- 1. Groin hematoma
- 2. Pseudoaneurysm
- 3. Immunocompromised
- 4. Poor access site hygiene
- 5. Use of closure devices

Treatment

- 1. Antibiotics
- 2. Surgery

Prevention

1. Sterile technique

- 2. Repeat antiseptic prep before closure
- 3. Avoid closure devices in pts at high risk for infection
- 4. State-of-the-art access technique
- 5. Sheath removal asap post procedure
- 6. Prophylactic antibiotics
- 7. Prevent hematomas

Femoral artery manual compression steps

1. Telemetry with noninvasive BP monitoring.

- 2.Personnel available to administer atropine or fluids if needed 3.Sterile gloves
- 4.Operator's hands are placed above the femoral puncture site.
- 5. Sheath is removed while applying gentle pressure with small back bleed.

6.Firm pressure is applied confirming hemostasis.

7.Duration: 2–3 minutes × the sheath size

6 Fr: 12–18 min 8 Fr: 16–24 min

- 8. Check access site for hematoma.
- 9. Check distal pulses
- 10. Clear sterile dressing (Tegaderm)

Perclose Angio-Seal Active Approximation

Starclose

TOMOTO

DED.

Passive Approximation Devices

Devices

Duett

Exoseal

Mynx

FISH

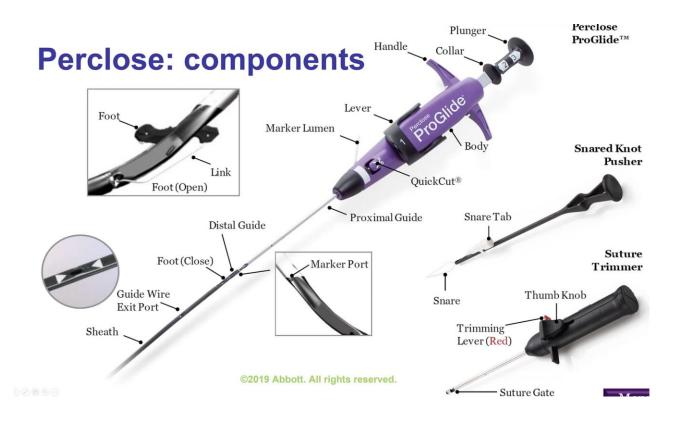
Unique Devices

R,

Arstasis Axera

Boomerang Catalyst III

© 2022 Cordis. All Rights Reserved.100591948 09/2022


Perclose steps

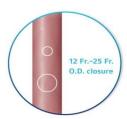
Groin antiseptic preparation

- 1. Prepare device
- Advance 0.035 inch guidewire+ remove femoral sheath
- 3. Tissue track preparation
- 4. Insert Perclose device
- 5. Perclose foot deployment
- 6. Perclose suture deployment
- 7. Perclose foot retraction
- 8. Perclose device retraction
- 9. Perclose device removal and suture tightening

10.Suture cutting

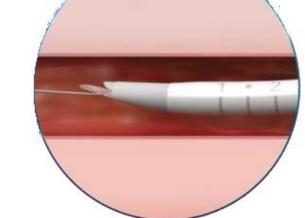
What is a MANTA device?

 The MANTA[™] device (Teleflex, Wayne, Pennsylvania, U.S.A.) is the first commercially available biomechanical vascular closure device designed specifically for large bore femoral arterial access site closure.

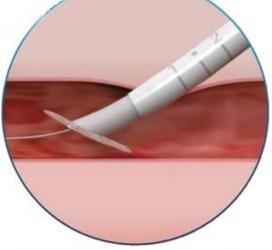


The 14F MANTA Vascular Closure Device is for access sites in the femoral artery following the use of 10-14F devices or sheaths (maximum OD of 18F).

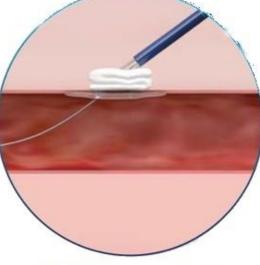
- Applicable procedures:
 - transcatheter aortic valve implantation (TAVI)
 - endovascular aneurysm repair (EVAR)
 - ventricular assist device (VAD)



The 18F MANTA Vascular Closure Device is for access sites in the femoral artery following the use of 15-18F devices or sheaths (maximum OD of 25F).

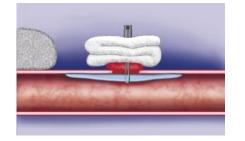

Mechanism of action

- Single (no safety wire) easy-to-use device;
- No pre-closure;
- Hemostasis is achieved primarily by the mechanical means of the anchor-arteriotomycollagen sandwich, which is supplemented by the coagulation-inducing properties of the collagen;



1. Insert the MANTA[™] Device

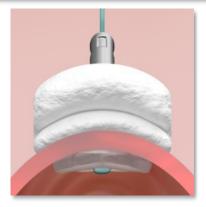
2. Position and release anchor



3. Withdraw and seal

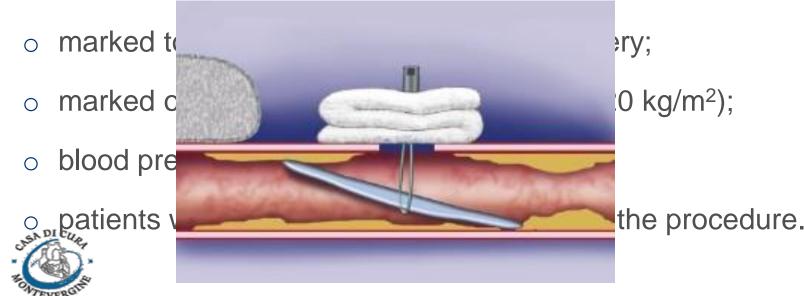
Mechanism of action

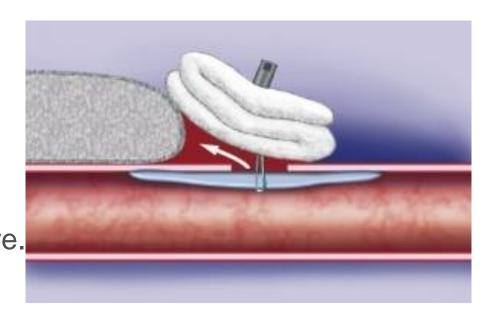
• The polyester suture holds the components together and the extra-arterial radiopaque lock secures it in place.



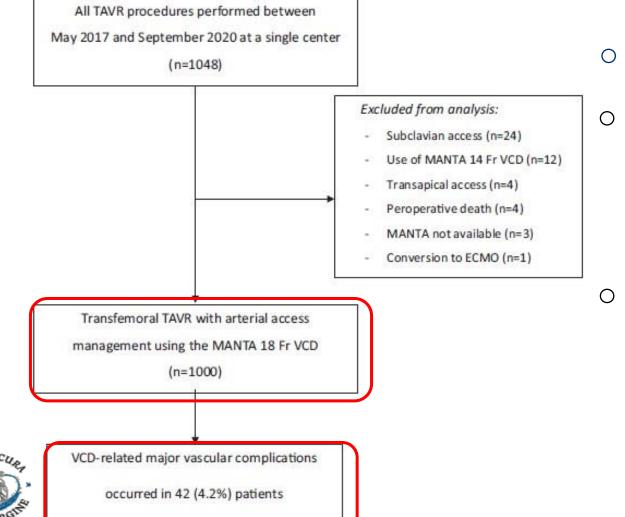
Keys to deployment success

Complete Maintain tension collagen Obtain accurate during lock compaction with Good access is Verify results advancement at deployment essential increased using angiogram a 45-degree depth tension to angle audible "click"





Contraindications

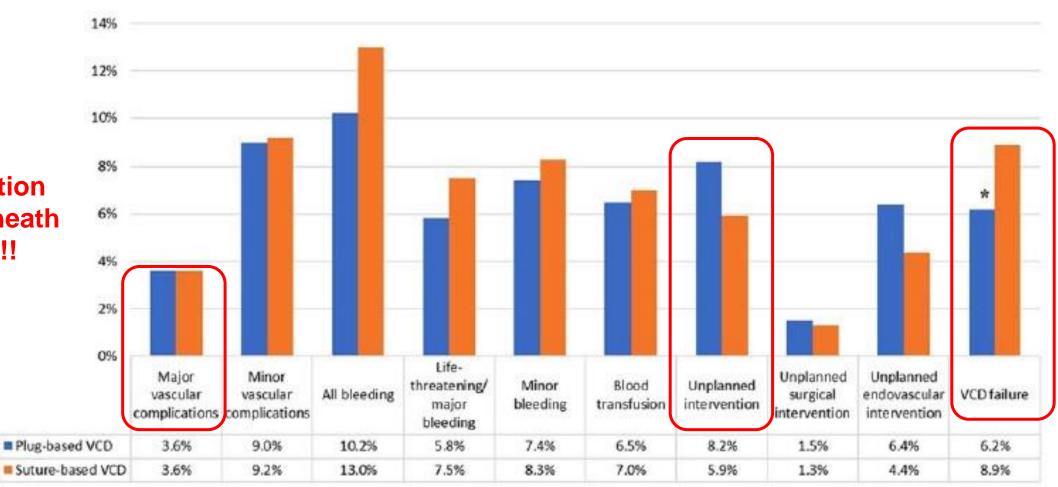

- o severe calcification of the access vessel;
- severe peripheral artery disease (CFA <5.0 mm if 14F, <6.0 mm if 18F MANTA planned);
- puncture in the origin of the profundal femoral artery, above the inguinal ligament, or above the most inferior border of the epigastric artery (IEA);
- o sheath insertion in vessel other than the femoral artery;

What about the literature? The largest ever real-world observational study

- 166/1000 expandable sheaths
- no significant differences in major complications were seen between individual interventionists irrespective of experience with the device
- a larger sheath (outer diameter) to femoral artery (inner diameter) ratio was the only factor associated with a significant increase of PCD-related major vascular complications

What about the literature? CHOICE-CLOSURE randomized clinical trial

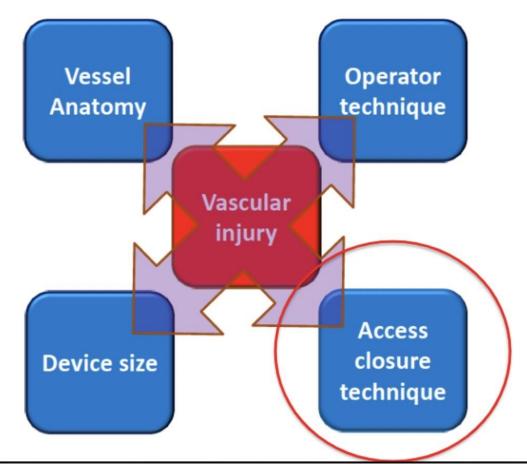
	MANTA-based technique	ProGlide-based technique	P value	
Variable	n=258	n=258		
Use of protamine, n/N (%)				
None	4/256 (1.6)	2/258 (0.8)		
Half-dose*	202/256 (78.9)	197/258 (76.4)	2 2	
Full doset	50/256 (19.5)	59/258 (22.9)		
Manual compression, n/N (%)				
<3 min	190/253 (75.1)	81/251 (32.3)	10 A	
3-10 min	42/253 (16.6)	157/251 (62.5)		
>10 min	21/253 (8.3)	13/251 (5.2)		
Additional vascular closure device, n/N (%)	0/258 (0.0)	151/258 (58.5)	< 0.001	
Number of additional vascular closure devices	0.0±0.0	0.6±0.5	< 0.001	
type of additional vascular closure device, n/N (%)				
Manta	-	6/151 (4.1)	-	
ProGlide	-	3/151 (2.1)	<u></u>	
Angio-Seal 6F		84/151 (57.9)	1	
Angio-Seal 8F	-	51/151 (35.2)	-	
Femoseal		1/151 (0.7)		
Endovascular ballooning, n/N (%)	20/258 (7.8)	14/258 (5.4)	0.375	
Stent or stent-graft, n/N (%)	11/258 (4.3)	4/258 (1.6)	0.116	
Time to hemostasis, seconds, median (interquartile range)	80 (32-180)	240 (174-316)	< 0.001	
Residual stenosis ≥50%, n/N (%)	0/258 (0.0	4/258 (1.6)	0.132	
Vascular closure device failure, n/N (%)	12/258 (4.7)	14 (5.4)	0.841	


0	Qnly 18F Manta enrolled!						
0		_{0/258 (11.6%)}	nean sheat	th size	p = 0.133		
Ũ							
0	89/258	and	87/258	expand	dable		
	sheaths	s in the	e MANTA	and do	ouble		
umber)	Perclos	e 20	ProGlide	19/258 (7 G%)	oups,		
O /ascular bleeding (number)	respect	ively					
r bleed	15 •						
ascula	More a	access	site-relate	ed vas	cular		
2	complic	ations	(durin	g 15 i	ndex		
	ĥpspita	lizatior	n) in MAN	TA pat	ients		
	(p = 0.0)	29)	Major				
0	No sig	nifican		es ⁴in	PCD		
	railure	MANTA	·	ProGlide			

Abdel-Wahab M et al. Circulation 2022;145:170-83

What about the literature? MANTA vs. suture-based PCDs: a meta-analysis

No discrimination according to sheath technology!!!



Sedhom R et al. Catheter Cardiovasc Interv 2023;101:817-27

Vascular Access and/or Complications Multifactorial

Final Considerations CONCLUSIONS (Vascular Access)

- Femoral access 1st Choice
- Angio-Guided punture by left transradial approach is not timeconsuming (choice left or right), if anatomy is unknown
- Not too high-not low femoral punture always avoids Retroperitoneal Hematoma
- Axillary Access possibile but... time consuming, more complications difficult to manage and less favourable to VCD
- VCD 1st Choice: Proglide

• Always be prepared to failure by a balloon dry closure

CONCLUSIONS (Complications)

- Percutaneous treatment of vascular complications occuring during TAVI is safe and effective.
- Radial artery crossover technique for the treatment of vascular complications is as safe as femoral approach.
- It is important to be familiar with peripheral techniques and devices for a safe and effective percutaneous management of vascular complications and the appropriate choosing of the right equipement.
- Choose you're strategy on the bases of your cath-lab capability.

Be ready to use sliding strategies.