HOT TOPICS IN CARDIOLOGIA 2023

13 e 14 Novembre 2023

Villa Doria D'Angri - Via F. Petrarca 80, Napoli VERICIGUAT : BLOCCO NEUROORMONALE E STIMOLAZIONE OSSIDO NITRICO

Dott. GIUSEPPE PACILEO

UOSD "Scompenso Cardiaco"

AOS DEI COLLI _ NAPOLI

NO CONFLITTO DI INTERESSI

openheart Four pillars of heart failure: contemporary pharmacological therapy for heart failure with reduced ejection fraction

Viewpoint

Sam Straw ⁽ⁱ⁾, ¹ Melanie McGinlay,² Klaus K Witte¹

Open access

The Four Pillars of Heart Failure

Figure 1 Initiation and optimisation of the Four Pillars of Heart Failure. All agents are initiated in parallel. This is followed by up-titration in one, two or three steps, as required. Additional therapies are then considered as a final step. ARNI, angiotensin receptor-neprilysin inhibitors; BB, beta-blocker; MRA, mineralocorticoid receptor antagonists;SGLT2i, sodium-glucose co-transporter 2inhibitors.

The war against heart failure: the Lancet lecture

Eugene Braunwald

Packer M. NEJM 2020

HF is a progressive condition: patients with HF are caught in a vicious cycle and progressively worsen over time

Adapted from Gheorghiade et al. Am J Cardiol. 2005 and Cowie et al. ESC Heart Fail. 2014.

*Adjustment of and potential addition to current therapy.

 $\ensuremath{\mathsf{HCP}}\xspace,$ healthcare professional; $\ensuremath{\mathsf{HF}}\xspace$ heart failure.

1. Gheorghiade M et al. Am J Cardiol. 2005;96:11G–17G; 2. Cowie MR et al. ESC Heart Fail. 2014;1:110–145.

Worsening HF is associated with a four-fold increase in 1-year mortality risk compared with chronic HF

One-year all-cause mortality rate in patients hospitalized with acute HF or outpatients with chronic HF, prospectively enrolled in the IN-HF outcome registry (N=5,610)¹

PATHWAY

Pat hway	Receptor/target	Second messenger	Adaptive effects	Maladaptive effects	Drugs
Sympathetic nervous system Remin-angiot en sin-al doster one syst em	\$ ₁	G,> AC> сАМР > РКА	Increased contractility and relaxation	Excitation contraction uncou- pling Apoptotic pathways Alterations in β_1 signals	Selective β blockers(e.g., biso- prolol)
	<i>a</i> ₁	G _q >PLC-\$1 > DAG, IP3, PKC > MEF-2 ROS		Pro-fibrotic and pro- hypertrophic genes expression	Non-selective β blockers (e.g., carvedilol)
	AT-1	G _q > NADPH ox idase – ROS IA K/STAT > PTK PLC > DAG, IP 3, PKC Ty rosine kin me—MAPK		Vas oco nstrict ion, inflammation, proliferation, athero sclero sis Inflammation, growth, prolifera- tion DAG, IP3 > vaso constriction Inflammation, growth, prolifera- tion	ACE inhibitors, AT-I antagonists (ARBs)
Natriure tic pe ptide s	AT-2	Bradykinins>NO>cGMP G _q >PP2A, PTP>↓ MAPK	Vaso dilation, blunt in inflamma- tion, growth and proliferation		ACE inhibitors
	MIR.	Tissues with 11-p-HSD2: Kidney: sodium-water retention vSMCs: galectin-3; PKB; PIGF Endothelium: ICAM. Tissues with out 11-p-HSD2: Cardiomy ocytes Macrophages: M1 phenotype	Increased contractility	Hy pertension Fibrosis; apo ptosis; atheroscle- rosis Leukocytes adhesion Hy pertrophy, electric instability, orcidative stress Fibrosis and d an age	MR antagonists (MRAs)
	NPR-A	GC> cGM₽> PKG	Vasodilation, diuresis, natriu- resis, inhibition of cardiac hypertrophy and remodeling, suppression of ADH, blunt in SNS discharge		Ang istensin receptor??i eprilysin inhibitor
	NPR-B		Inhibition of vSMC prolifera- tion, LDLox migration, ET-1 release		
	NPR-C	Internalization of NPs for deg- radation		Blant in NPs effects	
Nitric oxide	Guanylate cyclase	¢GMP	Vaso dilation and muscular relaxation		Soluble guanylate cyclase stimulators (vericiguat) and activators

The Nobel Prize in Physiology or Medicine 1998

Photo from the Nobel Foundation archive. **Robert F. Furchgott**

Photo from the Nobel Foundation archive. Louis J. Ignarro

Photo from the Nobel Foundation archive. Ferid Murad

"for their discoveries concerning nitric oxide as a signaling molecule in the cardiovascular system"

The NO-sGC-cGMP pathway is a new target in HFrEF settings

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor –neprilysin inhibitor; cGMP, cyclic guanosine monophosphate; HFrEF, heart failure with reduced ejection fraction; NO, nitric oxide; RAAS, renin–angiotensin–aldosterone system; sGC, soluble guanylate cyclase; SGLT2i, sodium–glucose cotransporter 2 inhibitor; SNS, sympathetic nervous system.
1. Triposkiadis F et al. *J Am Coll Cardiol.* 2009;54:1747–1762; 2. Mann DL et al. *Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine*. 10th edn. Elsevier/Saunders; 2015; 3. Yancy CW et al. *J Am Coll Cardiol.* 2017;70:776–803; 4. Enseleit F et al. *J Cardiovasc Pharmacol.* 2001;37:S21–S30; 5. Kobori H et al. *Curr Pharm Des.* 2013;19:3033–3042; 6. Ponikowski P et al. *Eur J Heart Fail.* 2016;18:891–975; 7. Nauta JF et al. *Eur J Heart Fail.* 200;22:1147–1155; 8. Cohn JN et al. *J Am Coll Cardiol.* 2009;35:569–582; 9. Matsumura K & Sugiura T. *Cardiovasc Ultrasound.* 2019;17:26; 10. Gheorghiade M et al. *Heart Fail.* Rev. 2013;18:123–134; 11. CIBIS-II Investigators. *Lancet.* 1999;353:9–13; 12. MERIT-HF Investigators. *J Amed.* 1999;353:2001–2007; 13. CONSENSUS Investigators. *N Engl J Med.* 1987;316:1429–1435; 14. SOLVD Investigators. *N Engl J Med.* 1991;325:293–302; 15. McMurray JJV et al. *N Engl J Med.* 2014;371:993–1004; 16. McMurray JJV et al. *N Engl J Med.* 2019;381:1995–2008; 17. Packer M et al. *N Engl J Med.* 2020;383:1413–1424; 18. Armstrong PW et al. *N Engl J Med.* 2020;382:1883–1893; 19. Hartupee J & Mann D. *Nat Rev Cardiol.* 2017;14:30–38.

VICTORIA Phase III: study design

Primary objective: To evaluate the efficacy of vericiguat in comparison with placebo against a background of contemporary HF therapies in increasing the time to first occurrence of the composite of CV death or HFH

*Note: all subjects received standard HF treatment following locally relevant guidelines such as ACCF/AHA and ESC Guidelines for the Management of Heart Failure

ACCF, American College of Cardiology Foundation; AHA, American Heart Association; CV, cardiovascular; EF, ejection fraction; eGFR, estimated glomerular filtration rate; ESC, European Society of Cardiology; FDA, Food and Drug Administration; HF, heart failure; HFH, heart failure hospitalisation; HFrEF, heart failure with reduced ejection fraction; IV, intravenous; od, once daily; NT-proBNP, N-terminal pro B-type natriuretic peptide; QoL, quality of life; SBP, systolic blood pressure. 1. Armstrong PW et al. *JACC Heart Fail.* 2018;6:96–104; 2. Armstrong PW et al. *N Engl J Med.* 2020; doi:10.1056/NEJMoa1915928.

VICTORIA was specifically designed to study patients that recently experienced a worsening HF event

(Armstrong PW et al. N Engl J Med 2020)

Vericiguat reduced primary endpoint by means 4.2% (ARR) in a relatively short exposure time (10.8 months)

Time to CV death or first HFH

Armstrong PW et al. N Engl J Med. 2020;382:1883-1893

VICTORIA: Secondary Outcomes¹

HFH, total HFH and the composite of HFH or all-cause mortality were significantly reduced with vericiguat vs placebo

For patients with multiple events, only the first event contributing to the composite endpoint is counted.

*HR (vericiguat over placebo) and 95% CI from Cox proportional hazard model controlling for stratification factors (defined by region and race). #From log rank test stratified by the stratification factors defined by region and race. *Patients could have been hospitalized more than once. Based on data up to the primary completion date (18 June 2019).

CI, confidence interval; CV, cardiovascular; HFH, heart failure hospitalization; HR, hazard ratio; PY, patient-years.

1. Armstrong PW et al. N Engl J Med. 2020;382:1883–1893; 2. US Food and Drug Administration. 2020. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214377Orig1s000IntegratedR.pdf [accessed June 2021].

In VICTORIA, Adherence to the Target Dose of Vericiguat Was High¹

- \rightarrow One tablet per day with meal/food
- → Titration guided by evaluation of blood pressure and clinical symptoms
- No dosage adjustment for geriatric patients or patients with moderate renal or hepatic impairment

GDMT, guideline-directed medical therapy. 1. Armstrong PW et al. *N Engl J Med.* 2020;382:1883–1893.

The patient population in Q1–3 of VICTORIA reflects most patients seen in clinical practice

Percentage of patients with NT-proBNP ≤5,000 pg/ml following a worsening HF event in two large US databases^{1,2}

≤5,000 pg/ml at discharge*²

(Armstrong PW et al. N Engl J Med 2020)

NT-proBNP ≤5,000 pg/ml^{#1}

A *post hoc* analysis showed even greater benefit of vericiguat in patients most frequently seen in clinical practice

Time to primary endpoint in NT-proBNP groups Q1–3 (≤5,314 pg/ml) vs entire VICTORIA population^{1,2}

(Armstrong PW et al. N Engl J Med 2020)

In combination with other HF therapies, vericiguat substantially improves CV outcomes

CV outcomes according to treatment combination in a large network meta-analysis (N=95,444)¹

Treatment combination	CV death or HFH	HR (95% CI)	All-cause mortality	HR (95% CI)
ARNi + BB + MRA + SGLT2i		0.36 (0.29–0.46)		0.39 (0.31–0.49)
ARNi + BB + MRA + vericiguat		0.43 (0.34–0.55)		0.41 (0.32–0.53)
ARNi + BB + MRA + omecamtiv	⊢♦ −1	0.44 (0.35–0.56)		0.44 (0.36–0.55)
ACEi + BB + MRA + ivabradine		0.49 (0.39–0.61)	→	0.48 (0.39–0.58)
ACEi + BB + MRA + vericiguat		0.54 (0.43–0.67)		0.49 (0.39–0.62)
ARNi + BB + MRA		0.47 (0.38–0.58)	⊢ ∳ −i i	0.44 (0.37–0.54)
ACEi + BB + MRA		0.58 (0.47–0.71)		0.52 (0.44–0.61)
ARNi + BB		0.68 (0.58–0.79)		0.58 (0.50–0.68)
ACEi + BB	⊢♠⊣	0.84 (0.73–0.96)	HI I	0.69 (0.61–0.77)
BB	⊢♦ -1	0.75 (0.65–0.87)		0.78 (0.72–0.84)
0, Tre coml	25 0,5 1 eatment Favors	→ Placebo	0,25 0,5 1 Treatment Favors	s → Placebo

(Tromp et al. 2022)

Vericiguat has a favorable safety profile

(Armstrong PW et al. N Engl J Med 2020)

<u>VERICIGUAT</u> is specifically recommended for worsening HF in ESC 2021 guidelines

Recommendations	Class	Level	
Soluble guanylate cyclase receptor s			
Vericiguat may be considered in patients in NYHA Class II–IV who have had worsening HF despite treatment with an ACEi (or ARNi), a beta blocker and an MRA to reduce the risk of CV mortality or HFH			В
Vericiguat was included in the guidelines before EU approval	Worsening HF is referred to in the guidelines for the first time, and vericiguat is specifically recommended for this patient group	iguat is listed an e-modifying dr ne VICTORIA re	mong the ugs due to esults

(McDonagh TA et al. Eur Heart J 2021)

7.3.9.3. Pharmacological Treatment for Stage C HFrEF: Soluble Guanylyl Cyclase Stimulators

Recommendation for Pharmacological Treatment for Stage C HFrEF: Soluble Guanylyl Cyclase Stimulators Referenced studies that support the recommendation are summarized in the Online Data Supplements.

COR	LOE	Recommendation	
2b	B-R	 In selected high-risk patients with HFrEF and recent worsening of HF already on GDMT, an oral soluble guanylate cyclase stimulator (vericiguat) may be considered to reduce HF hospitalization and cardiovascular death.¹ 	

POSITION PAPER

Position paper ANMCO: Impiego di vericiguat nello scompenso cardiaco: dalle evidenze al posizionamento terapeutico

Stefania Angela Di Fusco¹, Alessandro Alonzo¹, Alberto Aimo², Andrea Matteucci¹, Rita Cristina Myriam Intravaia³, Stefano Aquilani¹, Manlio Cipriani⁴, Leonardo De Luca⁵, Alessandro Navazio⁶, Serafina Valente⁷, Michele Massimo Gulizia⁸, Domenico Gabrielli^{5,9}, Fabrizio Oliva¹⁰, Furio Colivicchi¹

+

Terapia ottimizzata

(ACEi/sartano/sacubitril+valsartan, beta-bloccante, MRA al dosaggio raccomandato o massimo tollerato, SGLT2-inibitore)

(BNP ≥300 ng/L o NT-proBNP ≥1000 ng/L in RS, BNP ≥500 ng/L o NT-proBNP ≥1600 ng/L in FA)

Ospedalizzazione nei 6 mesi precedenti

0

Necessità di diuretici ev nei 3 mesi precedenti

Falco L, Masarone D, Pacileo G, et al. Vericiguat: The Fifth Harmony of Heart Failure with Reduced Ejection Fraction. J. Cardiovasc. Dev. Dis. 2023, 10, 388.

