

Scompenso cardiaco sinistro e ipertensione polmonare

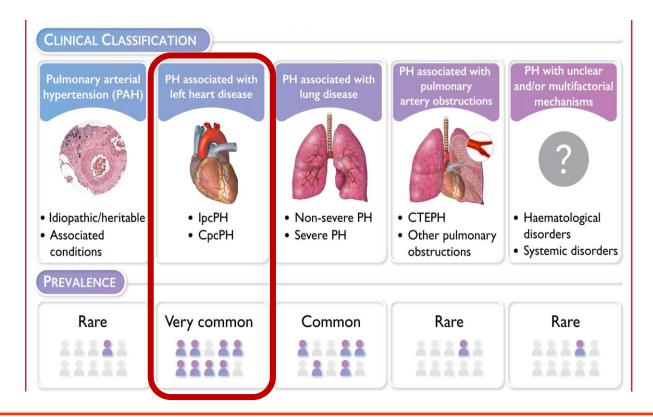
Michele D'Alto

Department of Cardiology – PH Unit Monaldi Hospital – Naples, Italy

Financial disclosure

Honoraria from: Actelion/Janssen, Merck Sharp and Dohme, Dompè, Ferrer, AOP.

Member of a scientific advisory board for: Actelion/Janssen, Merck Sharp and Dohme, Dompè, Ferrer, AOP.

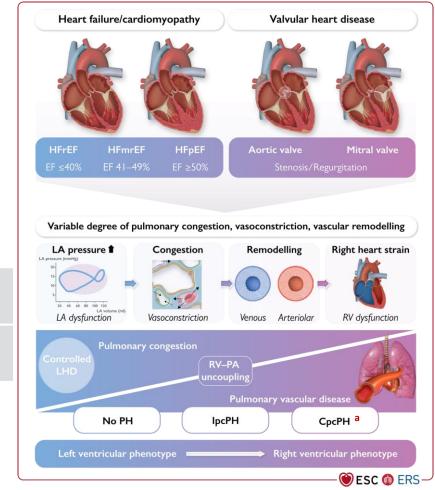

Agenda

- Definition of PH in Heart failure
- Why left HF patients develop PH? Any consequence?
- HFpEF-PH or PAH? The differential diagnosis
- Therapy for PH due to left heart disease.

2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension

ESC/ERS GUIDELINES

2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension

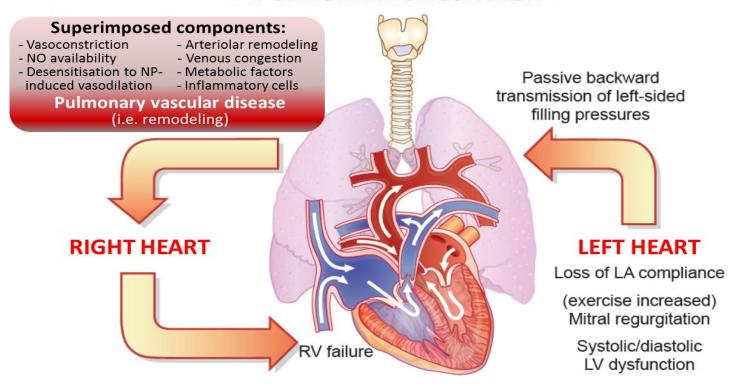

ESC/ERS GUIDELINES

Updated haemodynamic definitions of pulmonary hypertension

Definition	Haemodynamic characteristics
PH	mPAP >20 mmHg
	mPAP >20 mmHg
Pre-capillary PH	PAWP ≤15 mmHg
	PVR >2 WU
Isolated post-capillary PH	mPAP >20 mmHg
	PAWP >15 mmHg
	PVR ≤2 WU
Combined post- and pre- capillary PH	mPAP >20 mmHg
	PAWP >15 mmHg
	PVR >2 WU
Exercise PH	mPAP/CO slope between rest and exercise >3 mmHg/L/min

Pulmonary hypertension associated with left heart disease (group 2)

mPAP >20 mmHg
PAWP >15 mmHg
PVR ≤2 WU
mPAP >20 mmHg
PAWP >15 mmHg
PVR >2 WU



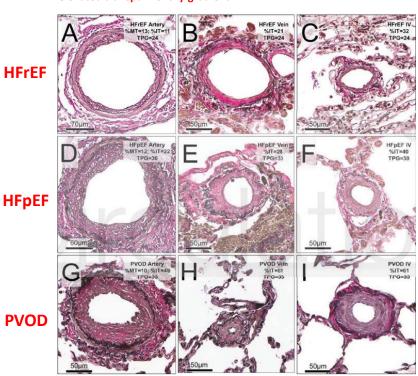
^asevere pre-capillary component in CpcPH:

PVR >5 WU

Left Heart – Pulmonary Circulation – Right Heart

PULMONARY CIRCULATION

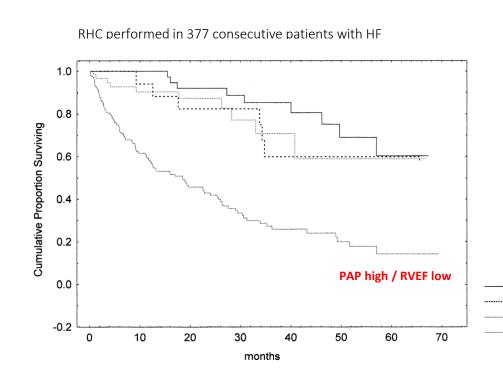
Arterial and Venous Remodeling in HFrEF and HFpEF


- 108 HF pts (53 preserved and 55 reduced) with PASP >40 mmHg
- □ 12 Controls
- □ 17 Pulmonary venous disease (PVOD)

<u>Figure S6</u>. Severity of intimal thickening in pulmonary veins with loose fibrosis/hyalinosis versus dense fibrosis intimal character

HF pattern of remodeling correlates strongly with venous and capillary thickening similar to PVOD

<u>Figure 5</u>. Pulmonary vascular structure in HF-PH and PVOD patients with elevated transpulmonary gradient



Fayyaz et al. Circulation. 2017 Dec 15. pii: CIRCULATIONAHA.117.031608

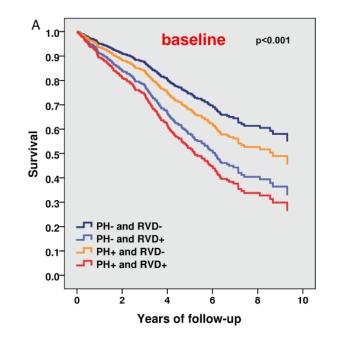
Independent and Additive Prognostic Value of Right Ventricular Systolic Function and Pulmonary Artery Pressure in Patients With Chronic Heart Failure

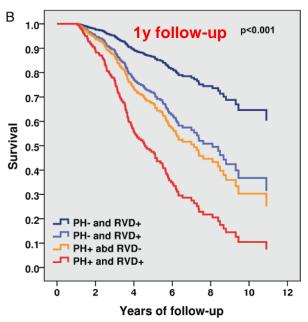
Stefano Ghio, MD, FESC,* Antonello Gavazzi, MD, FESC,* Carlo Campana, MD,* Corinna Inserra, MD,* Catherine Klersy, MD,† Roberta Sebastiani, MD,* Eloisa Arbustini, MD,‡ Franco Recusani, MD,* Luigi Tavazzi, MD, FESC, FACC*

J Am Coll Cardiol 2001;37:183-8

Coupling between RV function and PAP. The finding of an inverse relation between RV systolic function and PAP is in accordance with most previous pathophysiologic studies

does not seem to improve the prognostic stratification. In contrast, when PAP is high at rest despite optimized medical therapy, the prognosis of the patients is strongly related to RV performance. For example, reduced RVEF is a harbinger of high risk of death or urgent transplantation, whereas preserved RVEF implies a prognosis that is very similar to that of patients with normal PAP.

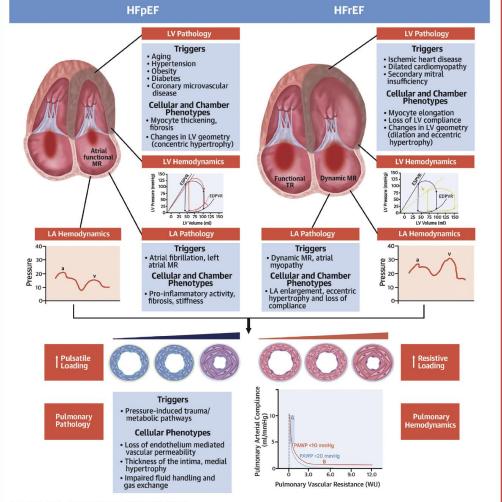

Pulmonary hypertension and right ventricular dysfunction in heart failure: prognosis and 15-year prospective longitudinal trajectories in survivors


Evelyn Santiago-Vacas^{1,2,3}, Josep Lupón^{1,2,4,5}, Giovana Gavidia-Bovadilla⁶, Francisco Gual-Capllonch², Marta de Antonio^{1,2}, Mar Domingo¹, Julio Núñez^{5,7,8}, Elisabet Zamora^{1,2,4,5}, Albert Teis², Pedro Moliner^{1,2}, Pau Codina^{1,2}, Javier Santesmases¹, and Antoni Bayes-Genis^{1,2,4,5*}

Prospective, observational registry HF (1557 patients)

- PH if SPAP ≥40 mmHg;
- RV dysfunction if TAPSE ≤16 mm
- RV-arterial uncoupling if TAPSE/SPAP
 <0.36 mm/mmHg

Survival according to the presence of PH and RV dysfunction


Pulmonary Hypertension in HFpEF and HFrEF

JACC Review Topic of the Week

Marco Guazzi, MD, PhD, a,b Stefano Ghio, MD, Yochai Adir, MD^d

J Am Coll Cardiol, 2020;76(9):1102-1111

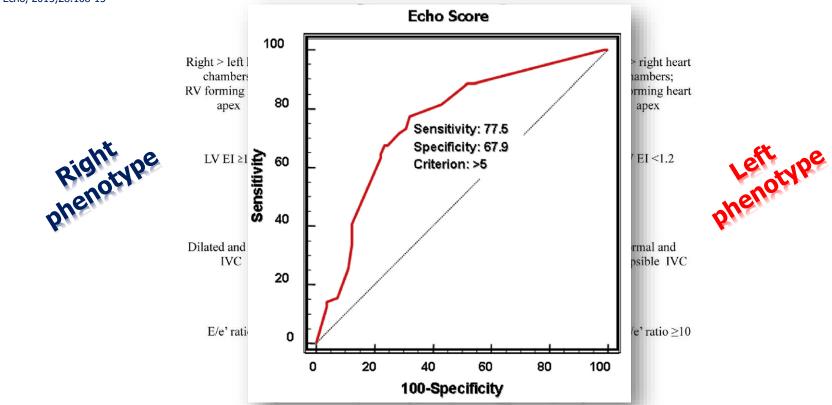
- In HF, development of PH is an unfavorable clinical turning point in the natural history of the disease.
- Although <u>HFpEF and HFrEF</u> exhibit a similar pulmonary hemodynamic profile and outcomes, there are major differences in underlying causes, cardiac remodeling, and comorbidities.
- There are also different triggers and molecular pathways for pulmonary vascular injury and remodeling in HFpEF versus HFrEF.

Guazzi, M. et al. J Am Coll Cardiol, 2020;76(9):1102-11.

2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

Pre- or post-capillary PH? Building a pre-test probability before RHC...

Table 23 Patient phenotyping and likelihood for left heart disease as cause of pulmonary hypertension

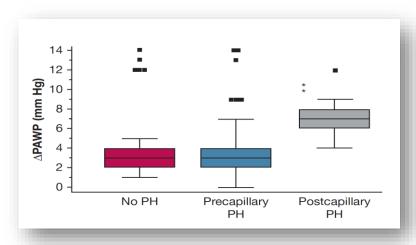

Feature	PH-LHD unlikely	Intermediate probability	PH-LHD likely
Age	<60 years	60-70 years	>70 years
Obesity, hypertension, dyslipidaemia, glucose intolerance/diabetes	No factors	1–2 factors	>2 factors
Presence of known LHD	No	Yes	Yes
Previous cardiac intervention	No	No	Yes
Atrial fibrillation	No	Paroxysmal	Permanent/persistent
Structural LHD	No	No	Present
ECG	Normal or signs of RV strain	Mild LVH	LBBB or LVH
Echocardiography	No LA dilation E/e' <13	No LA dilation Grade <2 mitral flow	LA dilation (LAVI $>$ 34 mL/ m^2) LVH Grade $>$ 2 mitral flow
CPET	High VE/VCO ₂ slope No EOV	Elevated VE/VCO ₂ slope EOV	Mildly elevated VE/VCO $_2$ slope EOV
cMRI	No left heart abnormalities		LVH LA dilation (strain or LA/RA >1)

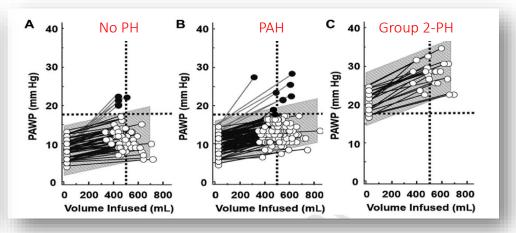
Echocardiographic Prediction of Pre-versus Postcapillary Pulmonary Hypertension

Michele D'Alto, MD, PhD, Emanuele Romeo, MD, PhD, Paola Argiento, MD, PhD,
Adriana Pavelescu, MD, PhD, Christian Mélot, MD, PhD, Antonello D'Andrea, MD, PhD, Anna Correra, MD,
Eduardo Bossone, MD, PhD, Raffaele Calabrò, MD, Maria G. Russo, MD, and Robert Nacije, MD, PhD, Naples,
and Salerno, Italy, Brussels, Belgium

J Am Soc Echo, 2015;28:108-15

- 152 patients
 - echo and RHC within 1 hour

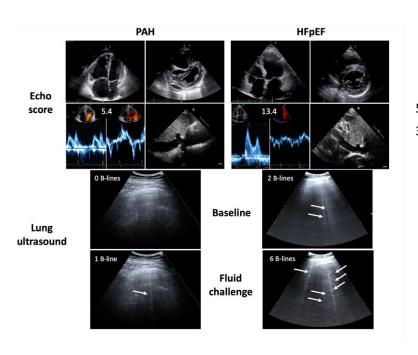


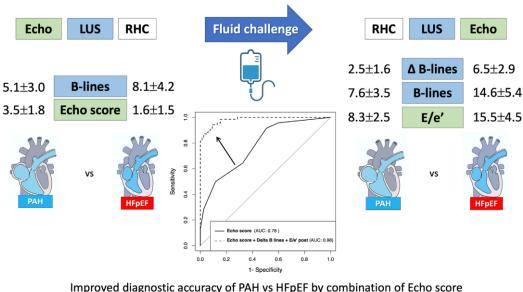


≋CHEST

D'Alto M. et al, CHEST 2017; 151(1):119-126

212 patients consecutive patients RHC with measurements before and after rapid infusion of 7 ml/kg of saline in 5-10'.


Conclusion:


A cut-off value of 18 mmHg allows to re-classify 6-8% of patients with pre-capillary PH or normal hemodynamics at baseline.

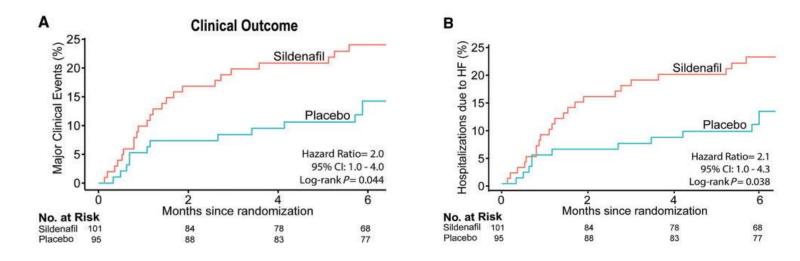
Lung Ultrasound, Echocardiography, and Fluid Challenge for the Differential Diagnosis of Pulmonary Hypertension

Michele D'Alto, MD, PhD, Biagio Liccardo, MD, Marco Di Maio, MD, Carmen Del Giudice, MD, Emanuele Romeo, MD, PhD, Paola Argiento, MD, PhD, Francesca Renon, MD, Andrea Vergara, MD, Alessandro Di Vilio, MD, Eleonora Caiazza, MD, Eduardo Bossone, MD, PhD, Gaetano Rea, MD, Antonello D'Andrea, MD, PhD, Luna Gargani, MD, PhD, Paolo Golino, MD, PhD, and Robert Nacije, MD, PhD, Naples, Salerno, Nocera Inferiore, and Pisa, Italy; and Bruxelles, Belgium

J Am Soc Echocard 2023

with post fluid challenge Delta B lines and E/e' post fluid challenge

PAH vasodilator therapy for HFpEF?



Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial

Javier Bermejo¹*, Raquel Yotti¹, Rocío García-Orta², Pedro L. Sánchez-Fernández³,

Eur Heart J 2018;39:1255-1264

- Multricentric, randomized, and placebo-controlled
- Successful valve replacement or repair procedure
- Precapillary PH (mPAP ≥30mmHg, PAWP ≤15 mmHg)
- Sildenafil 40 mg x 3 (n: 104) vs placebo (n: 96)

Conclusion

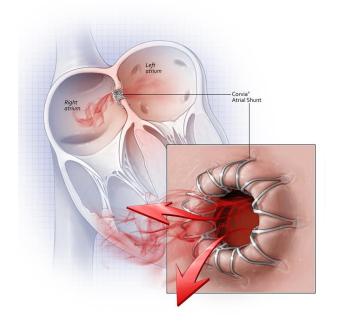
Treatment with sildenafil in patients with persistent PH after successfully corrected VHD is associated to worse clinical outcomes than placebo. Off-label usage of sildenafil for treating this source of left heart disease PH should be avoided.

Current Trials in Pulmonary Hypertension and Heart Failure

Study	Study Drug	N	Duration	Population	Primary endpoint	Result
Guazzi ¹	Sildenafil	44	12 mo	HFpEF	HD, RV performance	Improvement in PVR and exercise
Guazzi ²	Sildenafil	32	52 W	HFrEF	Exercise oscillatory breathing, PVR	Improvement in EOB, PVR and FC
LEPHT ³	Riociguat	201	16 W	HFrEF	Change in mPAP at rest from baseline to week 16	No significant effect on mPAP compared with pbo
Hoendermis ⁴	Sildenafil	52	12 W	HFpEF	Change in mPAP from baseline to week 12	No reduction in mPAP or improvement in other variables
BADDHY ⁵	Bosentan	40	12 W	HFpEF	Pilot study 6MWD, echocardiography	Premature discontinuation, favors placebo
MELODY-16	Macitentan	48	12 W	HF with LVEF > 30%	Proportion of subjects with significant fluid retention or worsening in FC	Main endpoint more frequently met on macitentan (+10%)
HELP HF ⁷	Levosimen dan	37	up to 6W	HF with LVEF ≥ 40%	Exercise PCWP	No reduction in exercise PCWP Improved 6MWD

Recommendations for PH associated with left heart disease

Recommendations	Class	Level
In patients with LHD and CpcPH with a severe pre-capillary component (e.g. PVR >5 WU), an individualized approach to treatment is recommended	- 1	С
When patients with PH and multiple risk factors for LHD, who have a normal PAWP at rest but an abnormal response to exercise or fluid challenge, are treated with PAH drugs, close monitoring is recommended	ı	С
In patients with PH at RHC, a borderline PAWP (13–15 mmHg) and features of HFpEF, additional testing with exercise or fluid challenge may be considered to uncover post-capillary PH	IIb	С
Drugs approved for PAH are not recommended in PH-LHD	III	Α


General management of PH in HFpEF

- Understand pathophysiology (of HFpEF and PH)
- Do not harm!
- Individualized treatment of PH-HFpEF Phenotyping
- Sequential approach

Underlying condition	Treatment
Diabetes	Optimize therapy Weigh loss
Systemic hypertension	Optimize therapy
Atrial fibrillation	Rhythm control or optimal rate control
Coronary artery disease	Therapy, revascularization (percutaneous, surgical)
Mitral or aortic disease	Percutaneous or surgical treatment
Left heart failure	Optimize therapy: betablockers, MRA,

ARNI, SGLT2 inhibitors, iron suppl, CRT...

A glimpse into the future: Inter Atrial Shunt Devices and Implantable Pressure Sensors in HFpEF

Conclusion

A clear definition of post-capillary PH is available: **phenotype the patient**!

PH and right ventricular dysfunction represent an unfavorable turning point in left heart failure.

PAH active drugs don't work in postcapillary PH: optimize the treatment of the underlying disease!